Случай, когда все вторые производные равны в этой точке нулю и минимум определяется более высокими производными, по существу ничего нового не дает, и мы не будем его специально рассматривать (линии уровня вместо эллипсов будут похожими на них кривыми четвертого порядка).
Отметим, что условию (11) удовлетворяют также точки максимумов и седловые точки. Но в точках максимумов квадратичная форма (12) отрицательно определенная, а в седловинах она знакопеременна.
Вблизи минимума функция мало меняется при заметных изменениях переменных. Поэтому даже если мы не очень точно определим те значения переменных, которые должны минимизировать функцию, то само значение функции при этом обычно будет мало отличаться от минимального.
Рассмотрим овражный тип рельефа. Если линии уровня кусочно-гладкие, то выделим на каждой из них точку излома. Геометрическое место точек излома назовем истинным оврагом, если угол направлен в сторону возрастания функции, и гребнем – если в сторону убывания (рис. 2, б). Чаще линии уровня всюду гладкие, но на них имеются участки с большой кривизной; геометрические места точек с наибольшей кривизной назовем разрешимыми оврагами или гребнями (рис. 2, в). Например, рельеф функции
изображенный на этом рисунке, имеет ярко выраженный извилистый разрешимый овраг, «дно» которого – синусоида, а низшая точка – начало координат.
В физических задачах овражный рельеф указывает на то, что вычислитель не учел какую-то закономерность, имеющую вид связи между переменными. Обнаружение и явный учет этой закономерности облегчает решение математической задачи. Так, если в примере (13) ввести новые переменные
Неупорядоченный тип рельефа (рис. 2, г) характеризуется наличием многих максимумов, минимумов и седловин. Примером может служить функция
рельеф которой изображен на этом рисунке; она имеет минимумы в точках с координатами
Все эффективные методы поиска минимума сводятся к построению траекторий, вдоль которых функция убывает; разные методы отличаются способами построения таких траекторий. Метод, приспособленный к одному типу рельефа, может оказаться плохим на рельефе другого типа.
2.2 Спуск по координатам
Казалось бы, для нахождения минимума достаточно решить систему уравнений типа (11) методом линеаризации или простых итераций и отбросить те решения, которые являются седловинами или максимумами. Однако в реальных задачах минимизации эти методы обычно сходятся в настолько малой окрестности минимума, что выбрать подходящее нулевое приближение далеко не всегда удается. Проще и эффективнее провести спуск по координатам. Изложим этот метод на примере функции трех переменных
Выберем нулевое приближение
Затем из новой точки сделаем спуск по направлению, параллельному оси
Будем повторять циклы. На каждом спуске функция не возрастает, и при этом значения функции ограничены снизу ее значением в минимуме
Это зависит от функции и выбора нулевого приближения. На примере функции двух переменных легко убедиться, что существуют случаи сходимости спуска по координатам к искомому минимуму и случаи, когда этот спуск к минимуму не сходится.
Будем двигаться по выбранному направлению, т. е. по некоторой прямой в плоскости
Пусть линии уровня образуют истинный овраг. Тогда возможен случай (рис. 3, б), когда спуск по одной координате приводит нас на «дно» оврага, а любое движение по следующей координате (пунктирная линия) ведет нас на подъем. Никакой дальнейший спуск по координатам невозможен, хотя минимум еще не достигнут; процесс спуска по координатам в данном случае не сходится к минимуму.
Наоборот, если функция достаточно гладкая, то в некоторой окрестности минимума процесс спуска по координатам сходится к этому минимуму. Пусть функция имеет непрерывные вторые производные, а ее минимум не вырожден. Для простоты опять рассмотрим функцию двух переменных
Докажем, что тогда спуск по координатам из данного нулевого приближения сходится к минимуму, причем линейно.
Значения функции вдоль траектории спуска не возрастают; поэтому траектория не может выйти из области
где через