Таким образом, получаем
где c не зависит от
.Теорема доказана.
Теорема 4.3 Пусть
- матрица , тогда ~Причем соответствующие константы не зависят от
Доказательство.
Воспользуемся эквивалентными представлением нормы
и неравенством о перестановках, получимгде
- невозрастающая перестановка последовательностиПрименим неравенство Гельдера
Учитывая лемму 3, имеем
Обратно, пусть e произвольное множество из M1,
, гдеТогда
В силу произвольности выбора e из M1 получаем требуемый результат.
Следствие. Пусть
- матрицаp0<p1, q0<q1,
тогдаДоказательство. Из теоремы 3 следует, что
Воспользуемся интерполяционными теоремами 1,2, получаем
то есть
С другой стороны по лемме 1 и теореме 3 имеем
,Следствие доказано.
Заключение
В данной курсовой работе приведены и доказаны некоторые свойства конечномерных пространств, а именно пространств Лоренца и сетевых пространств.
Полученные результаты могут быть полезны для студентов, магистрантов, аспирантов и преподавателей. Кроме того, данный материал может быть использован для чтения спецкурсов и спецсеминаров.
Список использованной литературы
1. Берг Й., Лефстрем Й. Интерполяционные пространства. Введение. М.: Мир, 1980.
2. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М.: Наука, 1965.
3. Костюченко А.Г., Нурсултанов Е.Д. Об интегральных операторах в пространствах. Фундаментальная и прикладная математика. Т.5. №2, 1999. С. 475-491.
4. Костюченко А.Г., Нурсултанов Е.Д. Теория управления катастрофами. //Успехи математических наук, 1998. Т.53. Выпуск 2.
5. Нурсултанов Е.Д. Сетевые пространства и неравенства типа Харди-Литтлвуда //Матем.сборник.-1998.-Т.189, №3.-С.83-102.
6. Таджигитов А.А. О зависимости нормы матрицы от взаимного расположения ее элементов. // Материалы Международной научной конференции "Современные проблемы теории функций и их приложения", Саратов, Россия, 2004, с. 177-178.
7. Таджигитов А.А. О норме и спектральном радиусе неотрицательных матриц. //Материалы Международной научно-практической конференции "Современные исследования в астрофизике и физико-математических науках", Петропавловск, 2004, с. 104-107.
8. Таджигитов А.А. Интерполяционные свойства конечномерных пространств. //Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов 2005", Астана, 2005, с. 41-42.