Вирішимо кожне рівняння із сукупності.
З огляду на, що ОПЗ:
Отже, сукупність прийме наступний вид:
Повернемося до системи:
Відповідь: {-3;6}.
2.3 Ірраціональні рівняння, які вирішуються введенням нової змінної
При рішенні різних видів рівнянь: раціональних, тригонометричних, показових часто використовується метод введення нової змінної. Нова змінна в рівняннях іноді дійсно очевидна, але іноді її важко побачити, а можна виявити тільки лише в процесі яких або перетворень. Буває корисно ввести не одну, а дві змінні. Бачимо типові випадки введення нових змінних в ірраціональних рівняннях.
Приклад 1. Вирішити рівняння
Рішення. Уведемо нову змінну. Нехай
Виконаємо зворотну заміну.
Відповідь:{34}.
Приклад 2. Вирішити рівняння
Рішення. Самота радикала й введення в ступінь обох частин рівняння привело б до громіздкого рівняння. У той же час, якщо виявити деяку спостережливість, то можна помітити, що дане рівняння зводитися до квадратного. Дійсно, помножимо обидві частини заданого рівняння на 2, одержимо, що
Уведемо нову змінну. Нехай
Виконаємо зворотну заміну.
Так як вихідне рівняння рівносильне рівнянню
Відповідь: {-2;3,5}.
Приклад 3. Вирішити рівняння
Рішення. Перетворимо дане рівняння.
Уведемо нову змінну. Нехай,
Виконаємо зворотну заміну.
2.4 Рівняння виду ,
,
Дані рівняння можна вирішити за допомогою основного методу рішення ірраціональних рівнянь (введення у квадрат обох частин рівняння), але іноді їх можна вирішити й іншими методами.
Розглянемо рівняння
Використовуючи, що
Таким чином, рівняння (3) є наслідком рівняння (1). Складаючи ці два рівняння й множачи отримане рівняння на а, одержимо рівняння
Зауваження. Відзначимо, що точно також доводиться, що рівняння (4) є наслідок рівняння
Приклад 1. Вирішити рівняння
Рішення. Різниця підкореневих виражень
те рівняння
Перевіркою переконуємося, що обоє цих числа є коріннями вихідного рівняння.
Відповідь:
Зауваження. Рівняння виду
Приклад 2. Вирішити рівняння
Рішення.