Дисциплина: Высшая математика
Тема: Геометрические векторы
В математике, физике, теоретической механике приходится иметь дело с величинами двух типов: одни имеют чисто числовой характер; другие же имеют не только числовую характеристику, но и связаны с понятием о направлении в пространстве. Рассмотрим, например, температуру, массу, энергию, скорость, ускорение, силу. Отличие последних трех величин от первых трех состоит в том, что с ними должно быть связано понятие о направлении. Первые три величины, не связанные с понятием о направлении, называются скалярами. Остальные три величины, имеющие определенное направление, называются векторами.
Так, при измерении температуры, мы получим положительное или отрицательное число, характеризующее ее величину в градусах. Точно так же можно измерить массу, энергию.
Определение 1. Скаляром называется величина, характеризующаяся только числом.
Следовательно, скаляры - это обычные числа, и различие между двумя одинаковыми числами может заключаться лишь в их размерности (м и см, м и кг).
Если необходимо измерить такую величину, как скорость точки, то для этого знать два числа (путь и время) недостаточно. Необходимо еще знать, куда двигается точка, то есть ее направление движения.
Определение 2. Вектором называется величина, характеризующаяся не только численным значением, но и направлением в пространстве.
Следовательно, утверждать, что если обе точки движутся со скоростью 2
Из сказанного следует, что для описания скаляра достаточно написать число и указать его размерность. Для описания векторной величины используют направленные отрезки, длина которых при выбранном масштабе соответствует величине вектора, а направление - совпадает с направлением векторной величины. В дальнейшем эти отрезки и будем называть геометрическими векторами.
При изображении вектора одна точка, ограничивающая вектор, называется началом, а вторая - концом вектора. В конце вектора ставится стрелка. Для краткой записи вектор можно обозначить с помощью двух букв
|
Определение 3. Расстояние между началом и концом вектора называется его длиной или модулем и обозначается
Определение 4. Вектор, у которого конец совпадает с началом, называется ноль вектором и обозначается
Определение 5. Векторы называются коллинеарными, если они расположены на одной прямой или параллельных прямых. Векторы называются коллинеарными, если они расположены в одной плоскости или в параллельных плоскостях.
Определение 6. Два вектора
Записывается это так
Из определения 6 следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства. При этом каждый новый вектор будет равен исходному.
Однако следует отметить, что все сказанное выше связано с так называемыми свободными векторами. Кроме них существуют еще передвижные и определенные векторы. У свободных векторов точку приложения можно выбирать где угодно. У передвижных - точку приложения можно перемещать вдоль самого вектора (например, сила, приложенная к твердому телу). У определенных векторов точка приложения должна быть зафиксирована (например, сила, действующая на жидкость). Но изучение всех векторов можно, в конечном счете, свести к изучению свободных векторов, поэтому в дальнейшем мы будем заниматься только ими.
К простейшим операциям над векторами относится сложение и вычитание векторов и умножение вектора на скаляр. Все эти операции называются линейными.
1) Сложение векторов.
Определение 1. Чтобы найти сумму двух векторов
|
Обозначается сума следующим образом:
|
Из правила параллелограмма видно, что сумма векторов обладает переместительным свойством
Если слагаемых больше, например, три:
|
Из рисунка видно, что тот же результат будет, если сложить вначале
Если при сложении нескольких векторов конец последнего совпадает с началом первого, то сумма равна ноль вектору
2) Разность векторов.
Определение 2. Разностью двух векторов
Значит, если
Из определения суммы двух векторов вытекает правило построения разности. Откладываем из общей точки векторы
Видно, что если на векторах