Смекни!
smekni.com

Нелинейное уравнение и интервал изоляции корня

Министерство образования РФ

Рязанская государственная радиотехническая академия

Кафедра ОиЭФ

Контрольная работа

«Нелинейное уравнение и интервал изоляции корня»

Выполнил ст. гр. 255

Ампилогов Н. В.

Проверил

Малютин А. Е.

Рязань 2007


Расчетная часть.

I.Заданное нелинейное уравнение и интервал изоляции корня:

.

II.Схема алгоритма отделения корней

Разбиение исходного интервала

, на котором определена и непрерывна функция
,на n отрезков равной длины:

Вычисление значения функции

в точках

концах отрезка

Выделение отрезка

Длина отрезка
достаточно мала (можно предположить единственность корня)

Корень отделен на интервале

Границы исходного отрезка сдвигаются

(
)

Воспользуемся приведенным выше алгоритмом для отделения корня уравнения на заданном отрезке:

1. Разобьем интервал изоляции корня

на n отрезков равной длины:

2. Вычисляем значения функции в точках

:

3. На концах отрезка (1;2) функция имеет разные знаки и он достаточно мал для определения корня.

III. Уточнение корня методом половинного деления

Отделение корней, нахождение отрезка изоляции

Вычисление f(a)

=(a+b)/2

Вычисление f(

)

a=

f(a)*f(
)<0 b=

Вывод

Произведем вычисления согласно представленному выше алгоритму. Необходимо определить корень методом половинного деления с погрешностью
.

Все условия для выполнения данного метода(указаны в теоретической части) выполняются.

Т.к.f(

)
то выбираем другой отрезок [1;1,5] на концах которого функция имеет разные знаки и продолжаем вычисления.

Выбираем отрезок [1;1,25] ,

является корнем т.к. нам необходимо найти корень с заданной погрешностью и выполняется условие прекращения вычислений:

;

Мы нашли корень за 2 шага.

Проведем вычисления в системе MathCAD

В системе MathCAD мы нашли корень так же за 2 шага.

IV. Уточнение корня методом хорд.

Отделение корней, нахождение отрезка изоляции.

Вывод

Произведем вычисления согласно представленному выше алгоритму. Необходимо определить корень методом хорд с погрешностью

.

Все условия для выполнения данного метода(указаны в теоретической части) выполняются.

Для того чтобы определить какой формулой метода хорд необходимо воспользоваться найдем значения первой и второй производной на концах отрезка изоляции корня:

Нашли корень за 1 шаг. Проведем вычисления в системе MathCAD.

В системе MathCAD мы нашли корень за 2 шага, это объясняется более высокой точностью MathCAD по сравнению с расчетами вручную.

V. Уточнение корня методом касательных.

Отделение корней, нахождение отрезка изоляции.

Вывод


Произведем вычисления согласно представленному выше алгоритму. Необходимо определить корень методом касательных с погрешностью

.

Все условия для выполнения данного метода(указаны в теоретической части) выполняются.

Нашли корень за 2 шага. Проведем вычисления в системе MathCAD.

В системе MathCAD мы нашли корень так же за 2 шага.

VI. Уточнение корня методом простой итерации.

Отделение корней, нахождение отрезка изоляции

[c;d]=[a-h;b+h]

Приведение уравнения

f(x)=0 к виду x=g(x)

n=0

n=n+1

Вывод

Произведем вычисления согласно представленному выше алгоритму. Необходимо определить корень методом простой итерации с погрешностью

.

Все условия для выполнения данного метода(указаны в теоретической части) выполняются.

Значит, итерационный процесс не применим, расходится и не позволяет получить решение.

Вывод: Изучили различные методы уточнения корней нелинейных уравнений (метод половинного деления, хорд, касательных, простой итерации). На основе полученных нами результатов можно сделать вывод о том, что высокую скорость сходимости при решении уравнений дает метод хорд и метод касательных. Скорость сходимости методов половинного деления и простой итерации небольшие, но они наиболее легко реализуются на ЭВМ.