Смекни!
smekni.com

Основы теории вероятности (стр. 4 из 9)


Задача №46 (о легкомысленном члене жюри).

В жюри из 3-х человек 2 члена независимо друг от друга принимают правильное решение с вероятностью р, а третий для вынесения решения бросает монету. Окончательное решение выносится большинством голосов.

Жюри из одного человека выносит справедливое решение с вероятностью р. Какое из этих жюри вынесет справедливое решение с большей вероятностью?

Решение. Пусть оба (из 3-х) членов жюри сходятся во мнениях, тогда вероятность справедливого решения равна
. При этом результат голосования 3-го жюри несущественен. Если судьи расходятся во мнениях, то вероятность справедливого решения 2-х судей –
. Полная вероятность вынесения справедливого решения жюри из 3х членов равна:

2р(1-р)

р2
р-р2
р.

Вывод: Оба типа жюри имеют одинаковую вероятность вынести справедливое решение.


Раздел 4. Основные теоремы теории вероятности

4.1 Формула полной вероятности

Группа гипотез – полная группа несовместных событий (пусть это будет Н1, Н2 , …, Нn). Пусть событие А может наступить лишь при появлении одного из них. Тогда вероятность события А вычисляется по формуле:

(4.1)

которая называется формулой полной вероятности.

Здесь:

- вероятности гипотез;

-условные вероятности события А.

Задачи

Задача №47. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнения квалификационной нормы равна: для лыжников – 0,9, для велосипедистов – 0,8, для бегунов – 0,75.

Найти вероятность того, что спортсмен, вызванный наудачу, выполнит норму.

Решение.

А = {спортсмен выполнил норму};

Н1 = {выполнил лыжник};

Н2 = {выполнил велосипедист};

Н3 = {выполнил бегун}.


Задача №48. Стрельба производилась по 3-м мишеням. По 1-ой – 5 раз, по 2-ой – 3 раза, по 3-ей – 2 раза. Вероятность попадания по 1-ой мишени равна 0,4, по 2-ой мишени – 0,1, по 3-ей – 0,12. Найти вероятность одного попадания в мишень.

Решение. Пусть A = {попадание в мишень при одном выстреле}

H1 = {стреляли в 1-ю мишень} P(H1) = 0,5

H2 = {стреляли в 2-ю мишень} P(H2) = 0,3

H3 = {стреляли в 3-ю мишень} P(H3) = 0,2

P(A/H1) = 0,4 P(A/H2) = 0,1P(A/H3) = 0,12

По формуле (4.1) имеем:
.

Задача №49. В лаборатории 3 одинаковых клетки. В 1-й - 3 белых и 7 коричневых мыши, во 2-й – 5 белых и 6 коричневых. В 3-й – 7 белых и 2 коричневых. Случайным образом берут из одной клетки мышь. Найти вероятность того, что выбрана белая мышь (событие А).

Решение. Пусть имеется 3 гипотезы:

Н1 = {выбрана мышь из 1-й клетки};

Н2 = {выбрана мышь из 2-й клетки};

Н3 = {выбрана мышь из 3-й клетки};

Р(Н1)= Р(Н2)= Р(Н3)=1/3

Условные вероятности события А будут равны:


Р(А/Н1)= 3/10; Р(А/Н2)=5/11; Р(А/Н3)=7/9.

По формуле (4.1) имеем:

Задача №50. Судостроительный завод получает от 3-х предприятий детали: от предприятия В – 60%, от С – 30%, от D – 10%. При этом на каждом из этих предприятий допускается брак, соответственно на В – 4%, на С – 5%, и на D – 6%. Какова вероятность того, что случайно выбранная деталь будет бракованной (событие А), если известно, от какого предприятия она поступила.

Решение. В качестве гипотез событий примем:

Н1 = {деталь поступила от предприятия В};

Н2 = {деталь поступила от предприятия С};

Н3 = {деталь поступила от предприятия D}.

Р(Н1) = 0,6; Р(Н2) = 0,3; Р(Н3) = 0,1

Условные вероятности события А равны соответственно:

Р(А/Н1)= 0,04;Р(А/Н2)=0,05;Р(А/Н3)=0,06.

По формуле (4.1) имеем:


Задача №51. В магазин поступили телевизоры от 5-ти фирм в следующем количестве:

Фирма 1 2 3 4 5
Количество телевизоров 5 10 6 8 11
Рi 0,98 0,8 0,6 0,3 0,1

Рi – вероятности того, что телевизоры исправны.

Найти вероятности того, что купленный наугад телевизор исправно работает (событие А)

Решение.

1) В качестве гипотез выберем события:

{телевизор i-й фирмы}, (i=
).

2) Найдём вероятности гипотез, учитывая, что п=40:

Р(Н1) = 5/40; Р(Н2) = 10/40; Р(Н3) = 6/40; Р(Н4) = 8/40; Р(Н5) = 11/40.

3) Условные вероятности равны:

Р(А/Н1) = 0,98; Р(А/Н2) = 0,8; Р(А/Н3) = 0,6; Р(А/Н4) = 0,3; Р(А/Н5) = 0,1.

4) По формуле (4.1) имеем:

Задача №52. Имеются 3 одинаковых ящика, в каждом из которых по 20 однотипных деталей. Определить вероятность того, что извлечённая из наугад выбранного ящика деталь стандартная (событие А), если известно, что в 1-м ящике 18 стандартных деталей, во 2-м – 17, в 3-м – 16.

Решение. Если в качестве i-й гипотезы (i = 1,2,3) выбрать событие

Нi = {деталь из i-го ящика}, то Р(Нi) =1/3.

Р(А/Н1) = 18/20;

Р(А/Н2) = 17/20;

Р(А/Н3) = 16/20.

По формуле (4.1) имеем:

4.2 Формула Байеса (формула переоценки вероятности гипотез)

Пусть событие А может наступить лишь при условии появления одной из гипотез

(см п.4.1). Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формуле Байеса:

(4.2)

Задачи

Задача №53. 70% населения обследуемого региона имеет только среднее образование, среди которых 10% безработных, 30% населения – с высшим образованием, среди них 2% безработных. Если выбранный наугад человек является безработным, то какова вероятность того, что он закончил ВУЗ?

Решение. В качестве гипотезы примем:

Н1 = {выбранный наугад человек со средним образованием};

Н2 = { выбранный наугад человек со высшим образованием }.

Р(Н1) = 0,7; Р(Н2) = 0,3.

Пусть соб. А = {выбранный наудачу человек безработный}, тогда

P(A/H1) = 0,1, P(A/H2) = 0,02.

Нужно определить P(

) по формуле (4.2).

Имеем:

Задача №54. На сборочный конвейер поступили детали с 3-х станков, производительность которых неодинакова: I-го – 50% плана, II-го – 30% плана, III-го – 20% плана. Вероятность получения годного узла равна 0,92, если деталь I-го станка, 0,95,если деталь со II-го станка, 0,82, если деталь с III-го станка. Определить вероятность того, что в сборку попали детали, изготовленные на первом станке, если узел годный.

Решение. А = { узел годный};

Н1 = {деталь с I-го станка};

Н2 = {деталь со II-го станка};

Н3 = {деталь с III-го станка};

Р(Н1)=0,5; Р(Н2)=0,3; Р(Н3)=0,2.

Р(А/Н1)=0,92; Р(А/Н2)=0,95; Р(А/Н3)=0,82.

Задача №55. 30% приборов собирают специалисты высокой квалификации, 70% - средней квалификации. Надёжность работы прибора, собранного специалистом высокой квалификации – 0,9, а специалистом средней квалификации – 0,8. Взятый наугад прибор оказался надёжным. Определить вероятность того, что прибор собран специалистом высокой квалификации.

Решение.

Пусть событие А = {прибор работает безотказно}.

До проверки прибора возможны 2 гипотезы:

Н1 = {прибор собран специалистом высокой квалификации};

Н2 = { прибор собран специалистом средней квалификации }.

Р(Н1) = 0,3, Р(Н2) = 0,7.

Условные вероятности события А равны:

P(A/H1) = 0,9, P(A/H2) = 0,8.

Пусть событие А произошло, тогда

.

Задача №56. Из 10 учащихся, которые пришли на экзамен по математике (нужно было подготовить 20 вопросов), трое подготовились на отлично (выучив по 20 вопросов), четверо – на хорошо, выучив по 16 вопросов, двое – на удовлетворительно, выучив по 10 вопросов, один не готовился и может ответить на 5 вопросов из 20. В билете 3 вопроса. Первый ученик ответил на все 3 вопроса своего билета. Какова вероятность того, что этот ученик подготовился на отлично?

Решение. Пусть событие А = {1-й ученик ответил на 3 вопроса} и гипотезы:

Н1 = {1-й ученик подготовлен на 5};

Н2 = {1-й ученик подготовлен на 4};

Н3 = {1-й ученик подготовлен на 3};

Н4 = {1-й ученик подготовлен на 2}.

P(H1) = 0,3; P(H2) = 0,4; P(H3) = 0,2; P(H4) = 0,1