Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем математики. Но по отдельным высказываниям, по использованию математического материала в качестве иллюстраций общих методологических положений можно составить представление о том, каков был его идеал построения системы математических знаний.
У Аристотеля отчетливо сформулированы логические принципы дедуктивного построения математической дисциплины. Чтобы что-то доказывать, делать логические выводы, нужно опираться на какие-то предшествующие положения, уже доказанные ранее. Поэтому для построения строгой математической теории необходимо перечислить некоторые предположения, на которые можно опираться при доказательстве.
Эти принципы особенно четкое воплощение получили в обширном творении Евклида (III в. до н.э.) «Начала», текст которого дошел и до нашего времени. На две тысячи лет «Начала» Евклида стали энциклопедией, место которого определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Величайшая заслуга Евклида состоит в том, что он подвёл итог построению геометрии и придал изложению совершенную форму.
Из арифметики постепенно вырастает теория чисел. Создается систематическое учение о величинах и измерении. Процесс формирования понятия действительного числа оказывается весьма длительным.
В течение 5-го, 4-го, 3-го тысячелетий до н.э. новые и более совершенные формы общества складывались на основе упрочившихся общин, существовавших на берегах великих рек Африки и Азии.
Восточная математика возникла как прикладная наука, имевшая целью облегчить календарные расчеты распределения урожая и сбора налогов. В начале главным делом были арифметические расчеты и измерения. Однако с течением времени из арифметики выросла алгебра, а из измерений возникли зачатки теоретической геометрии.
На Востоке возникла система, основанная на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда – системе, которая нам знакома, благодаря римскому исчислению, основанному на том же принципе. Именно на востоке определено значение π.
В течение последних столетий 2-го тысячелетия до н.э. в бассейне Средиземного моря и прилегающих к нему областях очень многое изменилось в политике. Итогом был расцвет греческого полиса – самоуправляющегося города – государства. Именно в этой атмосфере родилась современная математика.
Следующим был период Александрии. Одно из крупнейших произведений этого периода стало «Великое собрание» Птолемея. Там мы находим теорему о четырехугольниках, вписанном в окружность. В «Сферике» Менелая мы находим теорему о треугольнике в обобщенном для сферы виде. Но, тем не менее, Александрийская школа медленно умирала вместе с упадком античного общества.
Наиболее развитой частью римской империи всегда был восток. Земледелие запада было экстенсивным, никогда не имело в своей основе орошения и это содействовало астрономическим исследованиям. Мало подвижная цивилизация западной римской империи сохранялась в течение столетий.
В течение первых веков западного феодализма даже в монастырях не очень высоко ставят математику. Там она сводилась лишь к скромной арифметике церковного назначения.
Итальянские купцы посещали восток и знакомились с его цивилизацией. Они стремятся познакомиться с наукой и искусствами более древней цивилизации, чтобы использовать их в своей собственной новой системе. А в 12-13 столетиях мы видим уже рост банковского дела и зачатки капиталистической формы производства. Одним из ученых этого периода был Леонардо из Пизы (Фибоначчи). Он написал свою «Книгу Абака», заполненную алгебраическими и арифметическими сведениями, собранными во время путешествия. В книге «Практика геометрии» Леонардо рассказывает о том, что он открыл в области геометрии и тригонометрии. Интерес к математике стал распространяться на северные города. Поначалу это был практический интерес, и в течение нескольких столетий арифметику и алгебру вне университетов преподавали мастера, которые обычно не знали классиков, но зато обучали бухгалтерии и навигации.
Математика развивалась главным образом в растущих торговых городах. Горожан интересовал счет, арифметика, вычисления. Типичен для этого периода Иоганн Мюллер, ведущая математическая фигура 15-го столетия. Он перевел Птолемея, Герона, Архимеда. Он положил много труда на вычисление тригонометрических таблиц, составил таблицу синусов с интервалом в одну минуту. Значения синусов рассматривались как отрезки, представлявшие полухорды соответствующих углов в круге, поэтому они зависели от длины радиуса.
Развитие анализа получило мощный импульс, когда была написана «Геометрия» Декарта. Она включила в алгебру всю область классической геометрии. Декарт создал аналитическую геометрию. Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интереса к задачам, связанным с вероятностями, происходило прежде всего под влиянием страхового дела.
Период элементарной математики заканчивается, когда центр тяжести математических интересов переносится в область математики переменных величин. Еще в математике Древнего мира на материале изучения тригонометрических функций и при составлении их таблиц формируются представления о функциональной зависимости. Таким образом, весь период до 17 в. остается периодом элементарной математики.
В целом же математика прошла гигантский путь в этот период от зарождения счета на пальцах до сложнейших теорем.
В XVII в. начинается новый период истории математики – период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.
Кеплер в 1609-1619 гг. открыл и математически сформулировал законы движения планет. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Ньютон к 1686 г. сформулировал закон всемирного тяготения.
Первым решительным шагом в создании математики переменных величин было появление книги Декарта «Геометрия». Основными заслугами Декарта перед математикой являются введение им переменной величины и создание аналитической геометрии. Прежде всего, его интересовала геометрия движения, и, применив к исследованию объектов алгебраические методы, он стал создателем аналитической геометрии.
Аналитическая геометрия начиналась с введения системы координат. В честь создателя прямоугольная система координат, состоящая из двух пересекающихся под прямым углом осей, введенных на них масштабов измерения и начала отсчета – точки пересечения этих осей – называется системой координат на плоскости. В совокупности с третьей осью она является прямоугольной декартовой системой координат в пространстве.
К 60-м годам XVII в. были разработаны многочисленные метолы для вычисления площадей, ограниченных различными кривыми линиями. Нужен был только один толчок, чтобы из разрозненных приемов создать единое интегральное исчисление.
Дифференциальные методы решали основную задачу: зная кривую линию, найти ее касательные. Многие задачи практики приводили к постановке обратной задачи. В процессе решения задачи выяснялось, что к ней применимы интеграционные методы. Так была установлена глубокая связь между дифференциальными и интегральными методами, что создало основу для единого исчисления. Наиболее ранней формой дифференциального и интегрального исчисления является теория флюксий, построенная Ньютоном.
Математики XVIII в. работали одновременно в области естествознания и техники. Лагранж создал основы аналитической механики. Его труд показал, как много результатов можно получить в механике благодаря мощным методам математического анализа. Монументальное произведение Лапласа «Небесная механика» подвело итоги всех предшествовавших работ в этой области.
XVIII в. дал математике мощный аппарат – анализ бесконечно малых. В этот период Эйлер ввел в математику символ f (x) для функции и показал, что функциональная зависимость является основным объектом изучения математического анализа. Разрабатывались способы вычисления частных производных, кратных и криволинейных интегралов, дифференциалов от функций многих переменных.
В XVIII в. из математического анализа выделился ряд важных математических дисциплин: теория дифференциальных уравнений, вариационное исчисление. В это время началась разработка теории вероятностей.
Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите. Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практического использования общих правил в рукописях рассматривалось много примеров реального содержания, и излагался так называемый дощаный счет — прототип русских счётов. Подобным же образом была построена и первая арифметическая часть знаменитой «Арифметики» Л. Ф. Магницкого (1703). В геометрических рукописях, в большинстве своём преследовавших также практические цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.