Доказательство. Если хотя бы одно из чисел
или равно 0, то и равенство справедливо. Пусть элементы и ненулевые и . Поскольку - общее кратное чисел и , то для некоторого . Так как и , то - общий делитель и . Докажем, что делится на любой общий делитель элементов и . Пусть - произвольный общий делитель чисел и , т.е. и для некоторых . Поскольку - общее кратное элементов и , то . Так как , то для некоторого . Отсюда . Следовательно, , и, значит, НОД( ).Предложение 1. Полугруппа является НОК-полугруппой тогда и только тогда, когда есть НОД-полугруппа.
Доказательство. По свойству 12 достаточно доказать, что любая НОД-полугруппа является НОК-полугруппой. Пусть
есть НОД-полугруппа. Возьмем произвольные . Если хотя бы одно из чисел равно 0, то . Рассмотрим случай и . Обозначим . Тогда и для некоторых . Поскольку по свойству 7, то . Положим . Число является общим кратным элементов и . Осталось показать, что на делится любое общее кратное и . Возьмем произвольное общее кратное элементов и , т. е. для некоторых . Тогда , т.е. (поскольку ). По свойству 11 имеем , значит, для некоторого . Поэтому , т.е. .Далее будем рассматривать множество всех неотрицательных действительных чисел R+и мультипликативную полугруппуS R+, содержащую 0 и 1, с топологией, индуцированной топологией числовой прямой.
Лемма 1. Если S связно, то S= или S=R+.
Доказательство. Пусть S связное множество в R+. Тогда S является промежутком. Поскольку
и , то . Если в S нет элемента c > 1, то . В противном случае числа ( N) принимают сколь угодно большие значения. Поскольку S – промежуток, то для всех N. Отсюда R+.Лемма 2. Если несвязно, то
.Доказательство. Предположим, что .Тогда в силу несвязности
существуют такие числа , что и . Так как , то . Тогда . Полученное противоречие завершает доказательство.Лемма 3. Если
, то или =R+.Доказательство. Очевидно,
- полугруппа. Пусть и . Тогда существует элемент . Докажем, что . Возьмем произвольное . Пусть натуральное N таково, что . Тогда из следует . Отсюда . Лемма доказана.