if A[i,j]=0 then Rec(i,j,l+1)
end;
A[x,y]:=0;
end;
for i:=-1 to N+2 do for j:=-1 to M do A[i,j]:=-1;
for i:=1 to N do for j:=1 to M do A[i,j]:=0;
t:=0;
for i:=1 to N do for j:=1 to M do Solve(i,j,1);
writeln(‘число способов обхода конем доски’,N,’*’,M,’--’,t);
Изменим логику так, чтобы находился только один вариант обхода конем доски. При этом маршрут коня находится с использованием правила Варнсдорфа выбора очередного хода (предложено более 150 лет тому назад). Его суть - при обходе шахматной доски коня следует ставить на поле, из которого он может сделать минимальное количество перемещений на еще не занятые поля, если таких полей несколько, можно выбирать любое из них. В этом случае в первую очередь занимаются угловые поля и количество “возвратов” значительно уменьшается.
Вариант процедуры Solve для этого случая.
procedure Solve(x,y,l:integer);
varW:array[1..8] of integer;
xn,yn,i,j,m:integer;
begin
A[x,y]:=l;
if (l<N*N) then begin
for i:=1 to 8 do begin{формированиемассива W}
W[i]:=0;xn:=x+dx[i];yn:=y+dy[i];
if (A[xn,yn]=0) the begin
for j:=1 to 8 do
if (A[xn+dx[j],yn+dy[j]]=0) the Inc(W[i]);
end else W[i]:=-1;
end;
i:=1;
while (i<=8) dobegin
m:=1;{ищем клетку, из которой можно сделать наименьшее число перемещений}
for j:=2 to 8 do if W[j]<W[m] then m:=j;
if (W[m]>=0) and (W[m]<maxint)
then Solve(x+dx[m],y+dy[m],l+1);
W[m]:=maxint;{отмечаем использованную в переборе клетку}
Inc(i);
end;
end
else begin <выводрешения>;
halt;
end;
A[x,y]:=0;
end;
Классическая задача для изучения темы. Как и предыдущие, не обходится без внимания в любой книге по информатике. Формулировка проста. Дано клеточное поле, часть клеток занята препятствиями. Необходимо попасть из некоторой заданной клетки в другую заданную клетку путем последовательного перемещения по клеткам. Изложение задачи опирается на рисунок произвольного лабиринта и две «прорисовки» с использованием простого перебора и метода «волны». Классический перебор выполняется по правилам, предложенным в 1891 г. Э.Люка в “Математических досугах”:
· в каждой клетке выбирается еще не исследованный путь;
· если из исследуемой в данный момент клетки нет путей, то возвращаемся на один шаг назад (в предыдущую клетку) и пытаемся выбрать другой путь.
Естественными модификациями задачи поиска всех путей выхода из лабиринта являются:
· поиск одного пути;
· поиск одного пути кратчайшей длины методом «волны».
Решение первой задачи.
program Labirint;
const Nmax=...;
dx:array[1..4] of integer=(1,0,-1,0);
dy:array[1..4] of integer=(0,1,0,-1);
type MyArray=array[0..Nmax+1,0..Nmax+1] of integer;
var A:MyArray;
xn,yn,xk,yk,N:integer;
procedure Init;
begin
<Ввод лабиринта, координат начальной и конечной клеток. Границы поля отмечаются как препятствия>;
end;
procedure Print;
....
begin
<вывод матрицы А - метками выделен путь выхода из лабиринта>;
end;
procedure Solve(x,y,k:integer);{k - номер шага, x,y - координаты клетки}
var i:integer;
begin
A[x,y]:=k;
if (x=xk) and (y=yk) then Print
else for i:=1 to 4 do
if A[x+dx[i],y+dy[i]]=0 then Solve(x+dx[i],y+dy[i],k+1);
A[x,y]:=0;
end;
begin
Init;
Solve(xn,yn,1);
end.
На острове Новой Демократии каждый из жителей организовал партию, которую сам и возглавил. Ко всеобщему удивлению, даже в самой малочисленной партии оказалось не менее двух человек. К сожалению, финансовые трудности не позволили создать парламент, куда вошли бы, как предполагалось по Конституции острова, президенты всех партий.
Посовещавшись, островитяне решили, что будет достаточно, если в парламенте будет хотя бы один член каждой партии.
Помогите островитянам организовать такой, как можно более малочисленный парламент, в котором будут представлены члены всех партий.
Исходные данные: каждая партия и ее президент имеют один и тот же порядковый номер от 1 до N (4£N£150). Вам даны списки всех N партий острова Новой Демократии. Выведите предлагаемый Вами парламент в виде списка номеров ее членов. Например, для четырех партий:
Президенты | Члены партий |
1 | 2,3,4 |
2 | 3 |
3 | 1,4,2 |
4 | 2 |
Список членов парламента 2 (состоит из одного члена).
Задача относится к классу NP-полных задач. Ее решение - полный перебор всех вариантов. Покажем, что ряд эвристик позволяет сократить перебор для некоторых наборов исходных данных.
Представим информацию о партиях и их членах с помощью следующего зрительного образа - таблицы. Для примера из формулировки задачи она имеет вид:
Тогда задачу можно переформулировать следующим образом. Найти минимальное число столбцов, таких, что множество единиц из них “покрывают” множество всех строк. Очевидно, что для примера это один столбец - второй. Поговорим о структурах данных.
Const Nmax=150;
Type Nint=0..Nmax+1;
Sset=Set of 0..Nmax;
Person=record
man:Nint;{номержителя}
number:Nint;{число партий, которые он представляет}
part:Sset;{партии}
end;
Var A:array[Nint] of Person;
Логика формирования исходных данных (фрагмент реализации).
function Num(S:Sset):Nint;{подсчитывает количество элементов в множестве}
var i,ch:Nint;
begin ch:=0;
for i:=1 to N do if i in S then Inc(ch);
Num:=ch;
end;
procedure Init;{предполагается, что данные корректны и во входном файле они организованы так, как представлены в примере из формулировки задачи}
begin
readln(N);{числожителей}
for i:=1 to N do with A[i] do begin man:=i; part:=[i]; end;{каждыйжительпредставляетсвоюпартию}
for i:=1 to N do begin
while Not eoln do begin read(t);A[t].part:=A[t].part+[i];{житель t представляетпартиюсномером i, илипартиясномером i представленажителем t}
end;
readln;
end;
for i:=1 to N do A[i].number:=Num(A[i].part);
end;
Следующим очевидным шагом является сортировка массива А по значению поля number. Становится понятным и необходимость ввода поля man в структуру записи - после сортировки номер элемента массива А не соответствует номеру жителя острова.
Пока не будем задумываться о том, как сократить перебор. Попытаемся набросать общую схему. Используемые переменные достаточно очевидны, они описываются в процессе их ввода, присвоение начальных значений глобальным переменным осуществляется в процедуре Init .
procedure Include(k:Nint);{включениеврешение}
begin
Rwork:=Rwork+[A[k].man];
Inc(mn);
end;
procedure Exclude(k:Nint);{исключитьизрешения}
begin
Rwork:=Rwork-[A[k].man];
Dec(mn);
end;
procedure Solve(k:Nint;Res,Rt:Sset);
{k- номер элемента массива А; Res - множество партий, которые представлены в текущем решении; Rt - множество партий, которые следует “покрыть” решением; min - минимальное количество членов в парламенте; mn - число членов парламента в текущем решении; Rbest - минимальный парламент; Rwork - текущий парламент; первый вызов - Solve(1,[],[1..N])}
var i:Nint;
begin
блокобщихотсечений |
if Rt=[] then begin if nm<min then
begin min:=mn;Rbest:=Rwork end;
end
else begin
i:=k;
while i<=N do begin
блокотсеченийпо i |
Include(i);
Solve(i+1,Res+A[i].part,Rt-A[i].part);
Exclude(i);
Inc(i);
end;
end;
end;
Очевидно, что приведенная схема решения работает только для небольших значений N, особенно если есть ограничения (а они всегда есть) на время тестирования задачи. Предварительная обработка (до первого вызова процедуры Solve), заключающаяся в проверке, есть ли жители, которые представляют все партии (это первый шаг).
procedure One(t:Nint;Q:Sset);{проверяет - есть ли среди первых t элементов массива А такой, что A[i].part совпадает с Q}
var i:Nint;
begin
i:=1;
while (i<=t) and (A[i].part<>Q) do Inc(i);
if i<=t then begin Rbest:=Rbest+[i]; Rt:=[] end;
end;
Первый вызов этой процедуры - One(N,[1..N]), осуществляется в блоке предварительной обработки.
Рассмотрим пример.
Президенты | Члены партии |
1 | 2,3 |
2 | 4 |
3 | 2 |
4 | 1 |
Идея. Третий житель состоит в партиях 1 и 3, второй - в 1, 2 и 3. Есть “вхождение”, третий житель менее активный, исключим его. Однако из примера проглядывает и другая идея - появилась строка, в которой только одна единица. Мы получили “карликовую” партию, ее представляет один житель, заметим, что первоначально, по условию задачи, таких партий нет. Житель, представляющий “карликовую” партию должен быть включен в решение, но он же активный и представляет еще другие партии. Значит, эти партии представлять в парламенте нет необходимости - они представлены. Исключаем эти партии (строки таблицы), но после этого возможно появление других “карликовых” партий. Рассмотрим этот процесс на следующем примере: 1 - 8,9; 2 - 10,11; 3 - 12, 13; 4 - 8,9,10; 5 - 11,12,13; 6 - 8,9,10,11; 7 - 9,10,11,12,13;8 - 1,4,6; 9 - 1,4,6,7; 10 - 2,4,6,7; 11 - 2,5,6,7; 12 - 3,5,7; 13 - 3,5,7; 14 - 8; 15 - 9; 16 - 10; 17 - 11; 18 - 12; 19 - 13.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
11 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
12 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
13 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Выполняя операцию исключения жителей, «представительство» которых скромнее , чем у оставшихся, получаем.