Смекни!
smekni.com

Минимальные формы булевых многочленов (стр. 2 из 4)

1. АÚВ=В

2. АÙВ=А

3. АÚВ=U

4. АÙВ`=Æ

Любая конечная булева алгебра может содержать лишь 2 в степени nэлементов, где n– натуральное число.

Пример 2. 1)Множество делителей 70-ти D=<1,2,5,7,10,14,35,70>. Множество A=<2,5,7> -множество атомов решетки D.

10=2Ú5

14=2Ú7

35=5Ú7

70=(2Ú 5) Ú 7

70


10

14 35

2 5 7

1

2) Множество А={2,5,7}

Отношение вложенности.

{2,5,7}


{2,5} {2,7} {5,7}


{2} {5} {7}

Æ

Эта решетка изоморфна предыдущей.

Алгебра множеств и алгебра высказываний являются моделями абстрактной булевой алгебры. Все абстрактные булевы алгебры (которые состоят из одинакового числа элементов) изоморфны.

1.3Минимальные формы булевых многочленов

Определение. Понятие булева многочлена определяется рекурсивно. Пусть Хn= {x1,…, xn} – множество из n символов (называемых неизвестными или переменными), которое не содержит символов 0 и 1. Булевы многочлены над Хn суть объекты, которые могут быть получены последовательным применением следующих правил:

(I) х1, х2, …, хn, 0,1 – булевы многочлены;

(II) если p и q – булевы многочлены, то таковыми являются и

(p) Ù (q), (p) Ú (q), (p)¢.

Обозначим множество всех булевых многочленов над Хnчерез Рn.

Пример. Вот несколько примеров булевых многочленов над 1, х2}:0,1, х1, х2, х1 Ù х2, х1 Ú х2, х1¢1¢Ù х2.

Так как любой булев многочлен над x1,…, xnмодно рассматривать как булев многочлен над x1,…, xn, xn+1, мы имеем

Р1Ì Р2ÌÌ РnÌ Рn+1 Ì

Булев многочлен можно упростить с помощью аксиом булевой алгебры. В процессе упрощения часто трудно решить, какие аксиомы и в каком порядке должны быть использованы. Но существуют некоторые систематические методы упрощения булевых многочленов. Недостатком большинства этих методов является возможность их практического внедрения, когда число переменных слишком велико. Соответствующая проблематика в теории булевых алгебр носит общее название проблема оптимизации или минимизации булевых многочленов; она важна для таких приложений, как упрощение переключательных схем.

Определение. Назовем литералом любую переменную хi и ее дополнение хi¢, а также 0 и 1. Под произведением понимается произведение нескольких литералов, т.е. булев многочлен, в котором нет знака +. Дизъюнктивным выражением или просто выражением назовем буле многочлен, являющийся суммой произведений. Слагаемые в таком выражении назовем дизъюнктами.

Обсуждая упрощение булевых многочленов, мы ограничимся важным случаем сведения дизъюнктивных выражений к «минимальным выражениям» относительно специального условия минимальности. Обозначим через df общее число литералов в выражении f, а через ef – число дизъюнктов. Мы говорим, что выражение f проще выражения j, если df£dg, ef£eg и хотя бы одно из этих неравенств строгое. Выражение f называется минимальным, если не существует выражения, которое было бы эквивалентно f и проще f. Таким образом, мы будем искать «кратчайшее» выражение с наименьшим возможным числом литералов, которое было бы эквивалентно f. Такое минимальное выражение не всегда определено однозначно. Я опишу один из нескольких существующих методов упрощения. Он основан на работе Куайна и был улучшен Мак-Класки, поэтому называется методом Куайна - Мак-Класки.

Определение. многочлен p влечет многочлен q, если для любых b1,…., bnÎ В

рв (b1, …, bn) = 1 влечет qв (b1, …, bn) = 1;

в этом случае р называется импликантом для q. Простым импликантом многочлена р называется произведение

, которое влечет р, но если в
вычеркнуть хотя бы один сомножитель, то результат уже не влечет р. Произведение, сомножители-литералы которого образуют подмножество сомножителей-литералов другого произведения, называется подпроизведением последнего.

Пример. Произведение х1х3 является подпроизведением как х1х2х3, так и х1х2¢х3, и влечет выражение

р = х1х2х3 + х1х2¢х3 + х1¢х2¢х3¢,

поскольку 1х3)(1, i2, 1) = 1 и р(1, i2, 1) = 1, а для других значений аргументов х1х3 дает 0. Ни х1, ни х3 не влекут р; например, х1(1, 1, 0) = 1, но р(1, 1, 0) = 0, поэтому х1х3– простой импликант для р.

Теорема. Любой многочлен р ÎPnэквивалентен сумме всех своих простых импликантов.

Выражение, являющееся суммой простых импликантов для р, называется неприводимым, если оно эквивалентно р, но пересекает быть таковым, если удалить хотя бы одно слагаемое. Минимальное выражение должно быть неприводимым. Поэтому, чтобы определить минимальное выражение, мы находим все неприводимые выражения, а среди них ищем выражение с наименьшим числом литералов. Изложим теперь принадлежащий Куайну метод определения простых импликантов.

Простые импликанты получаются из дизъюнктивной нормальной формы d булева многочлена р применением (слева направо) правила

yz + yz¢~y,

когда это возможно. Более общо, мы используем правило

(*)

где

и
- произведения. следующий пример поможет понять смысл описываемой процедуры.

Пример. Пусть р – булев многочлен, имеющий следующую дизъюнктивную нормальную форму:

d = wxyz’ + wxyz’ + wxyz + wxyz’ + wxyz + wxyz’ + wxyz

Мы используем правило

и законы идемпотентности для тех (из общего числа (
) = 21
) пар дизъюнктов в d, для которых это возможно, тем самым «укорачивая» произведения. например, превый и второй дизъюнкты при использовании (*) дают wxz. Если в процессе упрощения слагаемые используются хотя бы один раз, то оно помечается. Так как знак + стоит вместо Ú, выражение может быть использовано любое число раз, но помечается не более одного раза. Таким образом, все помеченные произведения содержат более короткие произведения и поэтому не могут быть простыми импликантами. В целом в первом раунде этого процесса мы переходим

от wxyz и wxyz к wxz

от wxyz и wxyz к wxy

от wxyz и wxyz к wyz