ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственное образовательное учреждение
высшего профессионального образования
«Южный Федеральный университет»
Факультет математики, механики и компьютерных наук
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС
учебной дисциплины
«Теория вероятностей и математическая статистика»
для бакалавров
вузовского компонентного цикла ОПД
по специальности 010501
«Прикладная математика и информатика»
Рассмотрено и рекомендовано УТВЕРЖДАЮ
на заседании кафедры Декан факультета
теории функций и
функционального анализа ЮФУ
Протокол №____ _________________
«___»________2008 г.
«___»________2008 г.
Зав кафедрой ____________ (Кондаков В.П.)
Составитель:
доцент кафедры Луценко А.И.
Ростов-на-Дону
2008
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
I. Цели и задачи дисциплины, ее место в учебном процессе
I.1 Цели преподавания дисциплины
Курс «Теория вероятностей и математическая статистика» - общеобразовательная математическая дисциплина, объектом изучения которой является большая область математики, связанная понятиями случайности событий, измерением степени возможности появления этих событий, проведением экспериментальных исследований и математической обработкой их результатов, формулировкой полученных результатов.
Курс «Теория вероятностей и математическая статистика» читается студентам специальности “прикладная математика и информатика” в VI и VII семестрах. Цель преподавания – ознакомить студентов с задачами и методами теории вероятностей и математической статистики в объёме, достаточном для успешного практического использования полученных знаний в дальнейшей работе по специальности, а также для самостоятельного изучения соответствующей научной литературы.
I.2 Задачи изучения дисциплины
В результате изучения настоящего курса студент должен:
1) овладеть основами теории вероятностей, усвоив понятия множества элементарных исходов, алгебры случайных событий, вероятностной функции как числовой функции множеств, случайной величины, функции распределения случайной величины и числовых характеристик случайной величины;
2) ознакомится с методами и результатами решения классической предельной проблемы теории вероятностей, а также с применением этих результатов к решению задач статистической оценки значений числовых характеристик случайных величин и векторов и статистической проверки гипотез, построению простейших регрессионных моделей;
3) приобрести навыки практического решения вероятностных задач, постановки задач проведения статистического эксперимента, научится приёмам и методам статистической обработки экспериментальных данных и формулированию обоснованных выводов по результатам этой обработки.
I.3 Перечень дисциплин с указанием разделов (тем), знание которых необходимо для изучения теории вероятностей и математической статистики
1) Элементы теории множеств (операции над множествами, конечные и бесконечные множества, сравнение бесконечных множеств по мощности, алгебра множеств);
2) Математический анализ (теория пределов, непрерывные и дифференцируемые функции, ряды, преобразование Фурье);
3) Теория функций и функциональный анализ (понятия меры и измеримости множеств, интеграла Лебега, гильбертова пространства, различных видов сходимости последовательностей).
Согласно государственного образовательного стандарта высшего профессионального образования от 14 апреля 2000 года на изучение дисциплины «Теория вероятностей и математическая статистика» отведено 280 часов (70 часов лекционных + 35 часов практических аудиторных занятий + 175 часов самостоятельной работы) и предусмотрены следующие формы отчётности: 1 экзамен, 1 зачёт, 3 контрольных работы и 1 зачётное индивидуальное задание по математической статистике.
II.Рабочая программа курса
Модуль 1.Вероятностное пространство с не более чем счетным множеством элементарных исходов
Основные понятия: Элементарный исход. Множество элементарных исходов. Алгебра событий. Вероятностная функция. Условная вероятность.
Вероятностное пространство <W,A,P>
Множество элементарныхисходовW | Алгебрасобытий A | Вероятностнаяфункция P |
Примеры | Операции над событиями | Простейшие свойства |
1. Классическая модель:
;(Урновая схема, различные способы организации выборок).
2. Биномиальная модель (Схема Бернулли):
;(Полиномиальная модель).
3. Геометрическая модель:
;(Отрицательное биномиальное распределение).
Условная вероятность. Попарная независимость событий и независимость событий в совокупности.
Формула полной вероятности. Формула Байеса. (7 часов)
Модуль 2.Общая вероятностная модель. Аксиоматика А.Н. Колмогорова
Основные понятия: σ-алгебра множеств. Измеримое пространство. σ-аддитивная функция множеств. Нормированная функция множеств. Бесконечные множества различной мощности.
Аксиоматическое построение вероятностного пространства <W, A, P>. Свойства вероятностной функции. Борелевские алгебры множеств. Измеримые пространства <R, B (R)>;<Rn, B (Rn)>. Типы и примеры задания вероятностных функций на измеримых пространствах. (6 часов)
Модуль 3.Случайные величины и векторы
Основные понятия: Измеримая функция. Ряд распределения. Плотность вероятности. Компоненты случайного вектора. Согласованность законов распределения вероятностей. Устойчивость законов распределения вероятностей.
Случайная величина - измеримое отображение <W,A>в <R, B (R)>.
Случайный вектор - измеримое отображение <W,A>в<Rn, B (Rn)>.
Типы случайных величин и векторов. Задание законов распределения. Функция распределения случайной величины и случайного вектора. Компоненты случайного вектора. Частные распределения и частные функции распределения. Многомерный нормальный закон. Составной случайный вектор. Независимость случайных величин. Критерий независимости (три формы).
(9 часов)
Модуль 4.Числовые характеристики случайных величин и векторов
Основные понятия: Функция случайной величины. Математическое ожидание. Дисперсия. Начальные и центральные моменты случайных величин и векторов. Ковариационный момент. Коэффициент линейной корреляции.
Интеграл Лебега-Стилтьеса (Римана-Стилтьеса). Математическое ожидание случайной величины и случайного вектора. Свойства. Примеры. Дисперсия случайной величины. Свойства. Примеры. Начальные и центральные моменты случайной величины и случайного вектора. Ковариационный момент. Ковариационная матрица. Коэффициент линейной корреляции и его свойства. Условные распределения и условные математические ожидания. Линейная регрессия случайных величин. (12 часов)
Модуль 5.Классическая предельная проблема теории вероятностей
Основные понятия: Центрированные и нормированные суммы случайных величин. Виды сходимостей последовательностей случайных величин. Схема серий. Асимптотическая малость последовательности случайных величин.
Характеристические функции. Определение. Примеры характеристических функций для некоторых законов распределения случайных величин. Свойства характеристических функций. Теоремы непрерывности для последовательностей функций распределения и характеристических функций.
Классическая предельная проблема теории вероятностей
ЗБЧ | ЦПТ | ЗМЧ |
Теорема БернуллиТеорема ХинчинаТеорема ЧебышеваТеорема Пуассона | Теорема Муавра- ЛапласаТеорема ЛевиТеорема ЛяпуноваТеорема Линдеберга-Феллера | Теорема Пуассона |
У З Б Ч: Теорема Бореля и теорема Кантелли. Теоремы Колмогорова. Метод Монте-Карло. (10 часов)
Модуль 6.Первичная обработка статистических данных. Точечные оценки числовых характеристик
Основные понятия: Выборка. Вариационный ряд. Гистограмма. Состоятельность, несмещенность, эффективность точечных оценок. Статистика.
Требования к организации выборки. Первичная обработка статистических данных. Теорема Гливенко. Достаточные статистики. Точечные оценки числовых характеристик случайных величин. Требования к точечным оценкам. Неравенство Рао-Крамера. Методы получения точечных оценок числовых характеристик. (8 часов)
Модуль 7.Интервальные оценки числовых характеристик
Основные понятия: Степень свободы. Доверительная вероятность. Распределение Пирсона (
распределение). Распределение Стьдента ( распределение). Распределение Фишера-Снедекора ( распределение).Доверительный интервал. Специальные распределения. Общая линейная модель измерений. Распределения некоторых статистик. Примеры построения доверительных интервалов для числовых характеристик случайных величин. (4 часа)