Модуль 4.Числовые характеристики случайных величин и векторов
Цель модуля: На основе расширения понятия интеграла как интеграла от непрерывной функции по вероятностной мере определить понятия числовых характеристик. Показать на основе механической и геометрической интерпретации распределения вероятностной меры вероятностный смысл числовых характеристик. Научиться вычислять значения числовых характеристик и понимать их роль в изучении особенностей законов распределения случайных величин.
а) законы распределения функций случайных величин;
б) значения различных числовых характеристик случайных величин.
И в определении интеграла Римана, и в определении интеграла Римана-Стилтьеса область Q
Закон распределения случайной величины, записанный в одной из его форм с помощью вероятностной функции P или с помощью функции распределения
Наиболее употребительными числовыми характеристиками являются математическое ожидание – среднее значение случайной величины и дисперсия – мера рассеяния, разброса значений случайной величины около её математического ожидания.
Знание числовых значений математического ожидания и дисперсии служит задаче формулирования выводов о случайной величине и первичного представления о характере распределения её возможных значений.
При исследовании многомерной случайной величины, помимо математических ожиданий и дисперсий её компонент, рассматриваются ковариационные моменты, показывающие наличие и силу статистической связи между компонентами. Если статистические связи между компонентами имеют линейный характер, то в качестве оценки силы этой связи используется коэффициент линейной корреляции.
Модуль 5. Классическая предельная проблема теории вероятностей
Цель модуля: Показать, что решение многих практических задач (в математике и механике, экономике и финансах, физике и химии, биологии и геологии и т.п.) базируется на основе знания законов распределения случайных величин, являющихся суммами большого числа независимых случайных величин – факторов. Знание результатов решения классической предельной проблемы позволит принимать план действий и делать обоснованные выводы при решении задач математической статистики.
В предельной проблеме теории вероятностей изучаются законы распределения случайных величин, являющиеся суммами случайных величин:
Придерживаясь исторического аспекта в изложении предельной проблемы, сначала рассматриваем случайную величину, имеющую биномиальное распределение вероятностей
1) Если проводится большое число повторных независимых испытаний (n – велико), то решение практических задач проводится путём применения локальной и интегральной теорем Муавра-Лапласа, согласно которым:
Суть этих теорем состоит в том, что при больших значениях n биномиальное распределение вероятностей хорошо аппроксимируется нормальным распределением N
То есть из интегральной теоремы Муавра-Лапласа следует, что для функции распределения случайной величины
2) Случайная величина
Суть этой теоремы состоит в том, что при неограниченном увеличении n относительная частота с вероятностью близкой к единице ведёт себя как постоянная величина p.
3) Если вероятность p наступления события A в одном испытании «очень мала», а проводится большое число испытаний то, согласно теореме Пуассона, хорошую аппроксимацию биномиального распределения вероятностей возможных значений случайной величины
Случайная величина