Смекни!
smekni.com

Теория вероятностей и математическая статистика (стр. 4 из 17)

8. Покажите, что из того, что последовательность случайных величин подчиняется условию Ляпунова следует, что она подчиняется и условию Линдеберга.

9. Покажите, что теорема Муавра-Лапласа является частным случаем теоремы Линдеберга?

10. Покажите, что последовательность независимых разно распределённых бернуллиевских случайных величин подчиняется ЦПТ.

Модуль 6. Первичная обработка статистических данных. Точечные оценки числовых характеристик

1. Каким условием надо руководствоваться для определения числа интервалов при построении вариационного ряда?

2. Могут ли интервалы вариационного ряда иметь разные длины?

3. Можно ли утверждать, что из несмещённости точечной оценки числовой характеристики следует её состоятельность?

4. Будет ли точечная оценка, полученная методом максимального правдоподобия несмещённой оценкой числовой характеристики?

5. Какая теорема применяется при проверке состоятельности точечных оценок начальных моментов исследуемой случайной величины?

6. Может ли точечная оценка дисперсии быть отрицательным числом?

7. При проверке состоятельности оценки

применяется лемма, в которой по непрерывной функции
строится сходящаяся по вероятности последовательность
,
. Точечной оценкой коэффициента линейной корреляции будет статистика
, получаемая методом моментов. Постройте непрерывную функцию, с помощью которой, применяя лемму, можно проверить состоятельность этой оценки.

8. У случайной величины отсутствует математическое ожидание. Имеется статистическая выборка значений этой случайной величины. Можно ли утверждать, что у элементов выборки существует конечное среднее арифметическое?

9. Можно ли утверждать, что увеличение объёма выборки приводит к уменьшению величины отличия получаемых значений средних арифметических от значения математического ожидания?

10. Можно ли применять неравенство Рао-Крамера для проверки несмещённости точечной оценки?

Модуль 7. Интервальные оценки числовых характеристик

1. Увеличение объёма выборки при неизменном значении доверительной вероятности приводит к уменьшению длины доверительного интервала. Как будет изменяться доверительная вероятность, если при постоянной длине доверительного интервала будет увеличиваться объём выборки?

2. Покажите, что при увеличении числа n последовательность случайных величин

сходится по распределению к нормальному закону.

3. Покажите, что при увеличении числа n последовательность случайных величин

сходится по вероятности к единице.

4. Как изменяется длина доверительного интервала при увеличении доверительной вероятности?

5. Известно, что исследуемая случайная величина подчиняется нормальному закону с параметрами mи

. Можно ли использовать в качестве доверительных интервалов интервалы
, где
? Чему будут равны доверительные вероятности
?

Модуль 8. Статистическая проверка гипотез

1. Что называется критерием статистической проверки гипотез?

2. Можно ли выбрать такой критерий, при котором вероятность ошибки первого рода будет равна нулю?

3. Какие распределения вероятностей используются при построении критерия статистической проверки гипотез?

4. Дайте формулировку правила принятия решений?

5. Сколько типов задач рассматривается методами статистической проверки гипотез?

6. По результатам проверки двух гипотез:

,

,

где

и
- разные функции распределения, по элементам одной и той же выборки, прияты решения о том, что нет оснований отклонять и первую, и вторую гипотезу.

Может ли встретится такая ситуация при применении критерия Пирсона?

7. Может ли увеличение объёма выборки, по которой вычисляется наблюдаемое значение критерия, привести к отмене ранее принятого решения об отклонении основной гипотезы?

8. Можно ли использовать одну и ту же выборку для проверки гипотезы о значении математического ожидания и гипотезы о виде закона распределения исследуемой случайной величины?

9. В результате проверки принято решение об отклонении основной гипотезы и принятии альтернативной гипотезы.

Затем основную гипотезу назвали альтернативной, а альтернативную гипотезу назвали основной. Для того же критерия

, при том же уровне значимости α определены новые области
и
. Какое решение будет принято, если будет использована та же выборка?

10. Можно ли проверку знаний студента на экзамене считать статистической проверкой гипотез? Сформулируйте основную и альтернативную гипотезы. Что будет являться критерием проверки справедливости основной гипотезы? Объясните причины ошибок первого и второго рода.

Модуль 9.Корреляционный и регрессионный анализы

1. Какие задачи решаются в корреляционном анализе?

2. Может ли статистическая оценка коэффициента линейной корреляции принимать значения, модуль которых будет больше единицы?

3. В каком случае условные распределения компонент случайного вектора будут совпадать с частными распределениями компонент?

4. Какой вид будут иметь функции регрессии каждой из компонент случайного вектора, если эти компоненты – независимые случайные величины?

5. Определите координаты точки пересечения линейных уравнений регрессии компонент двумерной случайной величины.

6. При каком условии на компоненты двумерной случайной величины функции линейной регрессии одной компоненты на другую будут тождественно совпадать?

7. Чему будут равны остаточные дисперсии компонент двумерной случайной величины, если эти компоненты будут независимыми?

8. Чему будут равны остаточные дисперсии компонент двумерной случайной величины, если эти компоненты будут связаны линейной функциональной зависимостью?

9. Какой критерий применяется при проверке значимости коэффициента линейной корреляции?

10. В чём заключается различие между корреляционным и регрессионным анализами?

.


IV. Методические указания

Модуль 1. Вероятностное пространство с не более чем счетным множеством элементарных исходов

Цель модуля: Студент должен ознакомиться с основными понятиями и определениями теории вероятностей. Научиться решать задачи определения вероятностей наступления событий для простейших моделей испытаний, предусматривающих построение не более чем счётного множества элементарных исходов.

Введение основных понятий теории вероятностей, базируется на договоре о существе содержания терминов, на которых базируется новый предмет. Это понятия: испытание, элементарный исход, множество элементарных исходов, благоприятствующие элементарные исходы, равновозможные элементарные исходы. Усвоение этих основных понятий обеспечивается только жизненным опытом и способностью к абстрактному мышлению.

После ознакомления с основными понятиями, формулируется первые основные определения теории вероятностей. Это определения случайного события, противоположного события, достоверного и невозможного события, суммы и произведения событий, совместных и несовместных событий, алгебры событий.

После ознакомления с основными понятиям и усвоения основныхе определений, проводится подготовка к знакомству с новым, важнейшим понятием курса – понятием вероятности случайного события. Делается это аксиоматически, путем введения вероятностной функции Р.

Вероятностная функция Pвводится следующим образом.

Сначала постулируется, аксиоматически формулируется: «Каждому элементарному исходу

некоторым разумным способом ставим в соответствие положительное число
, (записывается это так:
). При этом требуется, чтобы выполнялось условие:
.» Затем, с использованием понятия благоприятствующего случайному событию элементарного исхода, определяется вероятность наступления случайного события следующим образом:
. То есть, по существу, каждому элементу A алгебры A,A
A,ставится в соответствие неотрицательное число, которое называется вероятностью этого элемента – вероятностью
наступления случайного события A. То есть вводится функция, которая отображает множество Aво множество чисел сегмента
. Кратко это можно записать так: P:A
. Так как здесь нельзя, подобно тому как это делается в анализе, ввести вероятностную функцию Р с помощью аналитической записи типа
:
, то у студента на этом этапе изучения курса возникают трудности в осмыслении понятия вероятностная функция.