Смекни!
smekni.com

Теория вероятностей и математическая статистика (стр. 12 из 17)

ВАРИАНТ № образец

1. На окружности радиуса r наудачу ставится точка. Из этой точки параллельно горизонтальному и вертикальному диаметрам проводятся две хорды, которые берутся в качестве сторон прямоугольника. Две другие стороны прямоугольника, проводятся параллельно этим хордам. Определите математическое ожидание и дисперсию величины площади получающегося прямоугольника.

2. В первой урне находятся два белых и три чёрных шара. Во второй урне – три белых и два чёрных шара. Из первой урны во вторую наудачу перекладывается один шар, а затем из второй урны сразу извлекаются два шара. Для двумерной случайной величины – число переложенных и число извлечённых шаров белого цвета построить таблицу распределения. Найти частные распределения компонент.

3. С какой уверенностью можно ожидать, что при 900 подбрасываниях игральной кости значение относительной частоты выпадений нечётного числа очков отклонится от вероятности

менее чем на 0,015?

ВАРИАНТ № образец

1. По сторонам прямого угла образованного координатными осями, концами скользит линейка длиною l. Все значения координаты её правого конца на оси абсцисс – равновозможные. Найдите математическое ожидание величины расстояния от линейки до начала координат.

2. В урне находятся один белый, два красных и три чёрных шара. Наудачу с возвращением каждый раз извлекаются два шара. Для случайных чисел появившихся шаров белого и красного цвета постройте таблицу распределения вероятностей.

3. Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с уверенностью не меньшей чем 0,95 можно было утверждать, что число наступлений события будет не менее 80?


VI. Индивидуальные задания по математической статистике

Методические указания

Для лучшего усвоения приёмов и методов математической статистики каждый студент получает индивидуальное задание.

Это задание представляет собой наборы статистических данных, полученных экспериментальным путём, и являются выборками значений двумерных случайных величин. В ходе выполнения работы студент должен выполнить следующие пять заданий, соответствующим пяти модулям теоретического курса.

1. Первичная обработка статистических данных.

Необходимо построить вариационные ряды. Построить гистограммы. Определить значения точечных оценок числовых характеристик случайных величин.

2. Интервальные оценки числовых характеристик случайных величин.

Построение доверительных интервалов для математических ожиданий и дисперсий. Приобретение навыков работы с таблицами специальных распределений математической статистики.

3. Статистическая проверка гипотез.

Решаются три задачи. Проверка гипотез о равенстве значений числовых характеристик некоторому фиксированному числу. Проверка гипотез о совпадении значений одноимённых числовых характеристик двух случайных величин.

4.Проверка гипотезы о виде закона распределения исследуемой случайной величины.

Критерий «согласия» Пирсона. Проверка гипотезы о совпадении законов распределения двух случайных величин.

5. Корреляционный анализ.

Оценка силы статистической связи между случайными величинами. Определение методом наименьших квадратов статистических оценок коэффициентов функции регрессии. Построение соответствующей геометрической иллюстрации.

Все задания выполняются последовательно по мере накопления теоретического материала. Студент представляет для зачёта каждое выполненное задание. Выполнение заданий предполагает использование персонального компьютера. Все задания представляются в распечатанном виде. После получения зачёта выполненные задания остаются у студента и могут в дальнейшем быть использованы как руководства по математической обработке статистических материалов.

Образцы статистических данных для выполнения индивидуальных заданий

Вариант № образец

Двумерная случайная величина дискретного типа

Длина слова (выборки

и
) и количество гласных в этом слове (выборки
и
) в орфографическом словаре русского языка.
1 6 3 4 2 51 9 3 7 3
2 16 7 7 3 52 8 3 8 3
3 4 2 9 4 53 9 3 6 2
4 8 4 7 3 54 9 3 8 4
5 5 2 6 2 55 11 5 7 2
6 9 3 6 2 56 15 7 8 2
7 12 6 7 3 57 8 2 3 1
8 11 6 8 3 58 10 4 7 3
9 9 5 6 3 59 6 2 9 4
10 7 3 5 3 60 7 2 7 3
11 8 3 7 3 61 8 3 7 3
12 8 4 7 3 62 6 4 11 5
13 6 3 5 2 63 5 2 9 4
14 9 5 8 3 64 7 3 7 3
15 5 2 5 2 65 5 2 7 3
16 7 4 12 4 66 5 2 6 2
17 10 6 5 2 67 7 2 8 3
18 9 4 5 2 68 9 5 8 3
19 10 5 8 3 69 7 3 9 5
20 14 7 9 3 70 5 2 6 3
21 12 5 5 2 71 8 3 7 3
22 7 3 7 3 72 7 3 6 2
23 7 3 5 2 73 10 5 5 2
24 6 3 3 1 74 8 4 8 3
25 7 4 4 2 75 8 3 8 4
26 12 6 7 2 76 8 3 5 2
27 12 6 8 3 77 5 2 12 4
28 8 5 5 2 78 12 5 11 6
29 9 4 7 3 79 15 6 5 2
30 7 3 5 2 80 9 4 6 2
31 12 7 3 1 81 7 3 4 1
32 7 3 6 2 82 8 4 7 3
33 8 4 6 2 83 10 4 7 2
34 5 2 7 3 84 4 2 10 4
35 8 3 8 3 85 9 4 6 2
36 7 4 5 2 86 6 4 14 7
37 11 5 8 3 87 5 2 12 5
38 6 3 6 2 88 5 2 8 3
39 5 2 6 2 89 6 2 8 3
40 7 3 9 3 90 10 4 5 2
41 9 4 7 2 91 5 3 7 3
42 5 2 3 1 92 8 5 5 2
43 6 2 8 3 93 17 8 6 2
44 10 4 10 4 94 18 7 15 7
45 10 4 7 4 95 7 5 10 4
46 7 3 5 2 96 7 4 10 4
47 17 9 7 4 97 5 3 8 4
48 10 4 5 2 98 6 3 6 3
49 10 4 10 4 99 10 5 6 2
50 9 5 7 3 100 7 4 11 3

Вариант № образец

Двумерная случайная величина непрерывного типа

Рост (см) (выборки

и
) и Длина окружности грудной клетки (см) (выборки
и
) двух групп обследованных юношей-призывников.
1 157,5 84,0 159,5 85,0 51 162,5 87,5 170,0 88,5
2 165,0 89,5 169,5 88,0 52 168,0 86,5 161,5 87,5
3 160,0 82,5 155,5 81,5 53 157,0 80,5 166,5 88,0
4 164,0 85,0 164,5 88,5 54 163,5 90,0 154,0 80,0
5 162,0 84,5 173,0 83,5 55 160,5 87,0 168,5 83,0
6 165,5 85,0 158,5 86,5 56 169,5 86,5 162,5 89,0
7 169,5 87,0 173,5 91,5 57 166,5 84,0 165,0 86,0
8 155,5 78,0 165,5 81,5 58 164,0 87,0 160,0 84,0
9 172,5 83,5 161,5 78,0 59 175,0 83,5 177,0 90,0
10 163,0 83,0 166,5 89,5 60 158,0 84,5 164,0 87,5
11 158,5 83,0 152,0 81,5 61 162,0 88,0 174,5 90,0
12 166,0 90,0 166,0 87,0 62 158,5 89,5 158,5 81,5
13 168,5 91,5 163,0 84,5 63 174,5 88,5 166,0 90,0
14 161,0 80,0 167,0 86,5 64 166,5 88,0 167,0 88,5
15 167,0 84,5 157,5 79,5 65 163,0 86,0 160,0 81,5
16 153,0 79,5 167,5 81,0 66 165,5 83,5 168,5 85,5
17 164,5 79,0 162,0 79,5 67 170,5 86,0 162,5 83,5
18 165,5 88,5 164,5 79,0 68 160,0 86,0 163,5 91,5
19 160,0 88,0 169,0 87,0 69 163,5 80,5 167,5 85,0
20 167,5 79,5 160,5 81,0 70 176,5 87,5 157,0 85,5
21 162,5 79,0 170,5 81,5 71 154,5 85,0 172,5 92,0
22 171,0 85,5 162,5 85,0 72 172,0 91,5 164,5 88,0
23 158,0 77,5 164,0 93,0 73 162,5 83,5 160,0 90,0
24 168,0 89,0 171,5 85,0 74 169,0 85,5 175,0 89,5
25 163,5 84,5 153,5 79,5 75 156,5 82,0 166,0 86,0
26 170,0 91,0 170,5 91,0 76 164,0 86,0 161,0 86,0
27 161,0 80,5 165,5 83,5 77 168,0 85,0 170,5 83,5
28 172,5 89,5 163,0 83,5 78 159,5 84,5 162,5 82,5
29 162,0 85,0 163,0 84,0 79 165,0 81,5 174,5 87,5
30 164,0 91,5 166,5 91,5 80 171,0 83,5 161,0 86,5
31 156,0 78,5 158,0 83,0 81 161,0 79,5 167,5 84,5
32 165,0 86,5 165,0 86,5 82 174,0 87,0 165,0 81,0
33 169,0 93,5 168,0 90,0 83 158,5 87,5 153,0 83,5
34 160,0 83,0 169,5 84,5 84 166,0 81,5 169,0 93,5
35 164,5 77,5 164,5 89,0 85 169,5 87,0 163,5 89,5
36 173,0 85,5 169,0 81,5 86 162,5 89,5 162,0 80,0
37 154,0 79,5 156,0 82,0 87 172,5 86,5 161,0 82,0
38 167,0 87,5 167,0 84,0 88 152,0 84,0 167,0 85,0
39 161,5 80,5 163,5 87 89 168,5 83,0 171,0 85,5
40 168,5 81,5 169,5 90,5 90 160,5 83,5 156,5 83,5
41 165,5 79,5 157,5 86,5 91 157,5 80,0 164,5 81,5
42 169,0 80,5 171,0 89,0 92 170,5 87,5 169,0 86,5
43 166,0 85,5 161,5 80,5 93 162,0 84,0 159,5 82,5
44 170,0 79,5 173,0 85,5 94 165,0 91,0 168,0 83,5
45 163,0 82,5 165,5 87,5 95 157,0 84,5 166,0 89,0
46 166,5 81,5 156,5 87,0 96 163,5 83,0 156,0 85,0
47 150,0 83,0 172,0 87,0 97 167,5 90,0 166,5 93,5
48 167,5 84,5 162,5 86,5 98 160,0 81,0 168,0 87,5
49 159,5 89,5 174,0 85,5 99 167,0 86,5 160,5 88,0
50 171,5 89,5 159,0 83,5 100 164,0 87,5 168,5 87,0

VII. ГЛОССАРИЙ