В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.
Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 2.
Рис. 2. Изображение потока событий на оси времени
Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.
Интенсивность потока событий ( ) – это среднее число событий, приходящееся на единицу времени.
Рассмотрим некоторые свойства (виды) потоков событий.
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.
В частности, интенсивность
Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени
Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами по нескольку сразу.
Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами:
1) стационарен;
2) ординарен;
3) не имеет последствий.
Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.
Для простейшего потока с интенсивностью
где
Для случайной величины T, имеющей показательное распределение, математическое ожидание
1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний
Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что все переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.
Итак, на систему, находящуюся в состоянии
Для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке).
Рис. 3. Размеченный граф состояний системы
На этом рисунке
Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.
Пусть система находится в состоянии S0. В состояние S1 ее переводит поток отказов первого станка. Его интенсивность равна:
где
Из состояния S1 в S0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна:
где
Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.
Пусть рассматриваемая система S имеет
Для нахождения всех вероятностей состояний
Что будет происходить с вероятностями состояний при
где
Финальные вероятности состояний – это уже не переменные величины (функции времени), а постоянные числа. Очевидно, что:
Финальная вероятность состояния – это по–существу среднее относительное время пребывания системы в этом состоянии.
Например, система S имеет три состояния S1, S2 и S3. Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S1, 3/10 – в состоянии S2 и 5/10 – в состоянии S3.
Правило составления системы уравнений Колмогорова: в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния
Пользуясь этим правилом, напишем систему уравнений для нашего примера: