Смекни!
smekni.com

Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши (стр. 4 из 7)

План вывода конкретного метода этого порядка можно выполнить при условии, что не возникает несовместных систем.

Шаг 1. Выбираем значения

,
и полагаем
.

Шаг 2. Из (2.6.2), (2.6.3), (2.6.4) и (2.6.6) находим

.

Шаг 3. Из уравнения

(это уравнение есть разность уравнений (2.6.5) и (2.6.7)) находим
.

Шаг 4. Из (2.6.10) находим

.

Шаг 5. Вычисляем

.

В случае

шаг 2 приводит к выбору
и
при условии, что
,
. В частности, имеем известный метод:

1.7 Оценка погрешности и сходимость методов Рунге-Кутты

Со времен работы Лагранжа и особенно Коши всякий установленный численно результат принято сопровождать надежной оценкой погрешности. Лагранж дал известные оценки погрешности многочленов Тейлора, а Коши вывел оценки для погрешности метода ломаных Эйлера. Через несколько лет после первых успехов методов Рунге-Кутты также пришел к заключению, что для этих методов нужны оценки погрешностей[2].

1.7.1 Строгие оценки погрешности

Способ, которым Рунге получил оценку погрешности, делаемой на одном шаге («локальной погрешности»), может быть описан следующим образом. Для метода порядка

рассмотрим локальную погрешность

(2.7.1)

и воспользуемся ее тейлоровским разложением:

, (2.7.2)

где

и
. Явное вычисление
дает выражение вида

, (2.7.3)

где

и
содержат частные производные
до порядков
и
соответственно. Далее поскольку
, имеем
. Таким образом, если ограничены все частные производные
до порядка
включительно, имеем
и
. Следовательно, существует постоянная
такая, что
и

. (2.7.4)

Бибербах использовал несколько иной подход. Запишем

(2.7.5)

и воспользуемся тейлоровскими разложениями

(2.7.6)

Для векторных функций эти формулы справедливы покомпонентно (возможно, с различным

). В силу условий порядка первые члены разложения (2.6.5) по степеням
обращаются в нуль. Таким образом, справедлива следующая теорема.

Теорема.

Если метод Рунге-Кутты (2.3.1) имеет порядок

и если все частные производные
до порядка
включительно существуют и непрерывны, то локальная погрешность метода (2.3.1) допускает следующую строгую оценку:

, (2.7.7)

или

. (2.7.8)

Продемонстрируем этот результат, применяя к скалярному дифференциальному уравнению первый метод Рунге-Кутты (2.2.4), который имеет порядок

. Дифференцируя (2.1.1), получим

. (2.7.9)

Вторая производная величины

имеет вид

Если условия теоремы выполнены, то легко видеть, что выражения (2.7.9) и (2.7.10) ограничены постоянной, которая не зависит от

, что и дает оценку (2.7.8).

1.7.2 Главный член погрешности

Для методов высших порядков строгие оценки погрешностей, подобные (2.7.7), становятся очень непрактичными. Поэтому гораздо более реалистично рассматривать первый ненулевой член в тейлоровским разложении погрешности.

Теорема.

Если метод Рунге-Кутты имеет порядок

и если
непрерывно дифференцируема
раз, то для главного члена погрешности имеем:

. (2.7.11)

(2.7.12)

1.7.3 Оценка глобальной погрешности

Глобальной (накопленной) погрешностью[3] называется погрешность численного решения после выполнения нескольких шагов. Пусть мы имеем некоторый одношаговый метод, с помощью которого при заданных начальных данных

и длине шага
мы определяем численное решение
, аппроксимирующее
. Воспользуемся обозначениями Хенричи для этого процесса:

, (2.7.13)

и назовем

функцией приращения для данного метода.

Оценивание глобальной погрешности методами a) и b)

Тогда численное решение в точке

получается с помощью пошаговой процедуры

, (2.7.14)

и наша задача состоит в оценке глобальной погрешности

(2.7.15)

Эта оценка находится простым способом: локальные погрешности переносятся в конечную точку и затем складываются. Этот «перенос погрешностей» можно выполнить двумя разными способами:

a) перенося погрешность вдоль кривых точных решений; этот способ может дать хорошие результаты, если известны хорошие оценки распространения погрешности для точных решений.

b) перенося погрешность

-го шага посредством выполнения
шагов численного метода; этот способ использовали в своих доказательствах Коши (1824) и Рунге (1905), он легко обобщается на многошаговые методы.

В обоих случаях оценим сначала локальные погрешности:

. (2.7.16)