Смекни!
smekni.com

Математичний більярд (стр. 3 из 6)

Якщо траєкторія, що виходить з точки М під кутом α до сторони AB, періодична, то це значить, що після випрямляння з цієї траєкторії вийде пряма, що проходить через М і через одну з крапок Мm,n. Якщо нумерувати крапки Мm,n індексами min, то крапка Мm0,n0 повинна бути такою, що m0 та n0 — парні числа. Саме (і лише) в цьому випадку більярдна куля проходить через ту ж крапку М під колишнім кутом α: номери m0 та n0 показують, скільки потрібне зробити віддзеркалень щодо вертикальних і горизонтальних сторін прямокутників, щоб отримати з крапки Мm0,n0 крапку М; при цьому непарне число віддзеркалень міняє напрям, парний же — не міняє.

Доведемо, що неособлива траєкторія, що виходить з крапки М прямокутника ABCD під кутом α до сторони AВ, періодична в тому і лише б тому випадку, коли тангенс її кута нахилу k=tga вимірний з відношенням сторін а1/а2прямокутника ABCD.

Дійсно, тільки що було з'ясовано, що періодичні ті і лише ті траєкторії, які (після випрямлення) відповідають прямим, що йдуть з точки М в одну з точок виду М2m,2n. Зауважу, що точка М2m,2n отримується з М зсувом на вектор 2m·АВ + 2·AD(*) так, що ΔМ М2m,2n К має катети з довжинами MK=2ma1 і М2m,2nК=2na2. Таким чином k=tgα=2ma1/2na2=m/n ·a2/a1,тобто k вимірне з a2/a1. Навпаки, якщо число k вимірне з a2/a1, тобто k= m/n ·a2/a1, то будь-яка пряма, що виходить з точки М з тангенсом кута нахилу k, проходить через точку, що отримується з М зсувом на вектор (*), тобто через точку М2m,2n .Якщо ця пряма не проходить через вершини прямокутників, то їй відповідає неособлива періодична траєкторія, що й потрібне було довести.

Зазначу, що в даному випадку ми все-таки можемо продовжити і будь-яку особливу, тобто таку, що закінчується в одній з вершин прямокутника, - траєкторію за цю вершину: ніщо не заважає на площині, замощеній нашими прямокутниками, продовжити, наприклад, МС за вершину С і вважати тим самим, що, потрапивши у вершину С, більярдна куля вилітає з неї по тому ж шляху, по якому він туди залетів - після відповідних віддзеркалень промінь СМ′поєднується з променем СМ. Таким чином, у разі більярда в прямокутнику можна вважати, що рух по будь-якій траєкторії продовжується необмежено в часі (наприклад, двічі прохідна діагональ АС прямокутника — це періодична траєкторія).

З доведеного твердження виходить:

Теорема 1. Якщо тангенс кута нахилу до траєкторій вимірний з числом k0=a2/a1то незалежно від початкового положення більярдної кулі його рух буде періодичним; в противному випадку траєкторія неперіодична.

З допомогою теореми 1 можна по початковій ланці траєкторії кулі визначати, чи є ця траєкторія періодичної або неперіодичної. Для цього треба знайти відношення довжин сторін прямокутника або, що те ж саме, тангенс кута нахилу діагоналі прямокутника і тангенс кута, під яким запущена кулька, і поділити перше число на друге: якщо в результаті вийде раціональне число, то траєкторія періодична, якщо ж — ірраціональне, то неперіодична. Звідси слідує також і та обставина, що для фіксованого початкового вектора швидкості кулі траєкторія буде періодичною або неперіодичною незалежно від його початкового положення на прямокутному столі. Тому, якщо запустити паралельно один одному відразу декілька більярдних шарів, вони або одночасно опишуть періодичні траєкторії, або ніколи не пройдуть по своєму старому сліду. Послідовність віддзеркалень цих куль від бортів більярда буде різною, якщо вони знаходяться достатньо далеко один від одного. Якщо ж кулі знаходяться достатньо близько, то послідовність бортів, від яких вони віддзеркалюються, буде однією і тією ж. Якщо першу ланку траєкторії однієї більярдної кулі оточити паралельними ланками цілого сімейства траєкторій інших куль, то отримані траєкторії, у разі, коли вони періодичні, заповнять самоперетинаючийся «коридор». Таким чином, знаючи одну періодичну траєкторію, ми паралельним зсувом її ланок одержуємо іншу періодичну траєкторію.

Задача а) Довести, що у всіх неособливих «паралельних періодичних траєкторій» в прямокутнику рівне число ланок і рівні довжини б) Довести, що в прямокутнику існують скільки завгодно довгі періодичні траєкторії.

Рішення. Це виходить з розгляду випрямлених траєкторій, що зображаються на ґратах прямокутників рівними паралельними відрізками.

Як же поводиться на прямокутному столі неперіодичнабільярдна траєкторія? В крузі і еліпсі неперіодична траєкторія не заходила в деякі ділянки — в концентричний круг і, відповідно, в софокусний еліпс (або в криволінійні сегменти софокусної гіперболи), проте заповнювала усюди щільно кільце між їх межами. В прямокутнику вона вже заходить в усі його ділянки і заповнює його усюди щільно, В цьому і полягає основний результат про неперіодичні траєкторії в прямокутному більярді.

Теорема 2. Якщо k/k0— ірраціональне число, то будь-яка траєкторія з кутовим коефіцієнтом k усюди щільно заповнює весь прямокутник, тобто перетинає будь-який (скільки завгодно малий) круг, що лежить усередині нього.

Таким чином, якщо точкову більярдну кулю запустити з будь-якого положення М в будь-якому напрямі α такому, що число tgα/tgφ ірраціональну, де φ — кут нахилу діагоналі до горизонтальної сторони, то він рано чи пізно зіткнеться з іншим, вже неточковою більярдною кулею (диском) N, куди б ми його ні поставили і скільки б малий він був! Отже, гравцям (у разі відсутності тертя) не потрібно особливо старатися, щоб потрапити в іншу кулю (або лузу!), треба лише мати терпіння і час, щоб дочекатися потрібного зіткнення.

Проблема побудови траєкторій більярдів в багатокутниках

Особливий клас утворюють більярди в многокутних і багатогранних областях. Ці області характеризуються тим, що у кожної дільниці межі ðQ – сторони многокутника або грані багатогранника – вектор нормалі ‍ň один і той же для всіх точок цієї дільниці. Внаслідок цього паралельний пучок білліардних траєкторій, відбившись відсторони (грані) остається паралельним. Для многокутних більярдів мається один елементарний, але водночас потужний геометричний прийом, так званий «прийом барона Мюнхаузена», що значно спрощує дослідження. («Прийом барона Мюнхаузена» - це метод випрямлення більярдних траєкторій, що наводився раніше. А саме, береться більярдна куля О (як у барона Мюнхаузена – гарматне ядро) і, озброївшись системою координат, спрямував вісь Оу в напрямку руху, а вісь Ох – вправо, перпендикулярно осі Оу). Метод випрямлення більярдних траєкторій в многокутнику належить німецькому математику Г.А. Шварцу (1843-1921). Але є перешкода, із-за якої картина поведінки в многокутнику виявляється досі непростою. Це – вершини многокутника (а у багатогранників - ребро).

Не менш цікаві і складні питання, пов’язані з періодичними і всюди щільними траєкторіями в многокутниках. Як приклад: вже в деяких трикутних областях мінімальна кількість ланок періодичних траєкторій може бути як завгодно велике. В випуклих областях діє теорема Биркгофа. В випуклій області Q з гладкою межою існує періодична траєкторія з будь-якою кількістю ланок n≥2 (достатньо вписати в Q ламану максимальної довжини з заданої кількістю ланок).


Три ланкова більярдна траєкторія

Вписаний трикутник АВС найбільшого периметру. Проведемо дотичну D'D'' в точці С і доведемо, що ‹АС D'' = ‹ВС D'. Тоді ‹АСС'>‹ВСС'. Для точки В', симетричної В відносно прямої СС', ламана АС'В'містить ламану АСВ' і тому довше, ніж вона.

Тобто периметр Δ АС'В більш, ніж периметр Δ АСВ, що протирічить вибору точок А, В, С.

Труднощі виникають і при знаходженні всюди щільних траєкторій в многокутниках. Роздивимось особливості траєкторій в різних видих многокутників.

Питання побудови траєкторії в кутах

Більярд в плоскому куті. Застостосовуємо прийом барона Мюнхгаузена до більярда в кутіАВС на площині, величину якого позначимо α. Як поводиться більярдна частка, відбиваючись від сторін цього кута? Чи може виявитися так, що вона «заплутається» усередині кута, після нескінченного числа віддзеркалень?Виявляється, не може, і метод випрямляння дає негайний доказ тому. На малюнку, що наведено нижче, показано що найбільше число Nα віддзеркалень частки від сторін кута а може дорівнювати або π/α, якщо це число ціле, або [π/α] + 1. Обидві отримані відповіді можна записати однією формулою: Nα = — [—π/α].