Смекни!
smekni.com

Математика и золотое сечение (стр. 2 из 2)

«Золотой треугольник» – это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1.618.

Есть и «золотой кубоид» – это прямоугольный параллелепипед с ребрами, имеющими длины 1.618, 1 и 0.618.

В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются «золотыми треугольниками». Внутри пятиугольника можно продолжить строить пятиугольники, и это отношение будет сохраняться.

Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана, она считалась символом здоровья и служила опознавательным знаком.

В настоящее время существует гипотеза, что пентаграмма – первичное понятие, а «золотое сечение» вторично. Пентаграмму никто не изобретал, её только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет. Поэтому естественно предположить, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем «золотая» пропорция.

«Лотарингский крест», служивший эмблемой «Свободной Франции» (организация, которую в годы второй мировой войны возглавлял генерал де Голль), составлен из тринадцати единичных квадратов. Установлено, что прямая, делящая площадь «лотарингского креста» на две равные части, делит его в золотом отношении.

Последовательно отсекая от «золотых прямоугольников» квадраты до бесконечности, каждый раз соединяя противоположные точки четвертью окружности, можно получить довольно изящную кривую. Первым внимание на неё обратил древнегреческий ученый Архимед, имя которого она и носит. Он изучал её и вывел уравнение этой спирали. В настоящее время «спираль Архимеда» широко используется в технике. В гидротехнике по «золотой спирали» изгибают трубу, подводящую поток воды к лопастям турбины. Благодаря этому напор воды используется с наибольшей производительностью.

Интерес человека к природе привёл к открытию её физических и математических закономерностей. Красота природных форм рождается во взаимодействии двух физических сил – тяготении и инерции. Золотая пропорция – это математический символ этого взаимодействия, поскольку выражает основные моменты живого роста: стремительный взлёт юных побегов сменяется замедленным ростом «по инерции» до момента цветения.

Рассматривая расположение листьев на общем стебле многих растений, можно заметить, что между каждыми двумя парами листьев третья расположена в месте «золотого сечения».

«Золотую спираль» также можно заметить в созданиях природы.

Например, расположение семечек в корзине подсолнечника. Они выстраиваются вдоль спиралей, которые закручиваются как слева направо, так и справа налево. В одну сторону у среднего подсолнечника закручено 13 спиралей, в другую – 21. Отношение 13: 21 – отношение Фибоначчи.У более крупных соцветий подсолнечника число соответствующих спиралей больше, но отношение числа спиралей, закручивающихся в разных направлениях также равно числу j.

Похожее спиральное расположение наблюдается у чешуек сосновых шишек или ячеек ананаса. По золотой спирали свёрнуты раковины многих моллюсков, некоторые пауки, сплетая паутину, закручивают нити вокруг центра по золотым спиралям. Рога архаров закручиваются по золотым спиралям.

Природа повторяет свои находки, как в малом, так и в большом. По золотым спиралям закручиваются многие галактики, в частности и галактика Солнечной системы.

Одним из первых проявлений золотого сечения в природе подметил разносторонний наблюдатель, автор многих смелых гипотез немецкий математик и астроном Иоганн Кеплер (1571 – 1630). С XVII в. наблюдения математических закономерностей в ботанике и зоологии стали быстро накапливаться.

В 1850 г. немецкий учёный А. Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равна примерно 138°. Величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении.

3. Золотое сечение в современной науке

В каждой науке есть т.н. «метафизические» знания, без которых невозможно существование самой науки. Например, если исключить из математики понятия натурального и иррационального чисел или аксиомы геометрии, математика сразу же перестанет существовать. С таким же правом к разряду «метафизических» знаний может быть отнесено и «золотое сечение», которое считалось «каноном» античной культуры, а затем и эпохи Возрождения. Однако, как это ни парадоксально, в современной теоретической физике и математике «золотая пропорция» никак не отражена. Ныне делаются попытки показать, что «золотое сечение» является одной из важнейших «метафизических» идей, без которой трудно представить дальнейшее развитие науки, в частности, теоретической физики и математики.

Анализ современных программ образования в таких странах, как США, Канада, Россия и Украина, показывает, что в большинстве из них нет даже упоминания о «золотом сечении». То есть, имеет место сознательное игнорирование одного из важнейших открытий античной математики. Возможно, причину следует искать в негативном отношении современной «материалистической» науки и «материалистического» образования к астрологии и так называемым «эзотерическим» наукам. В них «золотое сечение» и связанные с ним геометрические фигуры – «пентаграмма», «Платоновы тела», «куб Метатрона» – широко используются в качестве основных «сакральных» символов. И «материалистическое» образование не нашло ничего более разумного, как выбросить золотое сечение на свалку «сомнительных научных концепций» вместе с астрологией и «эзотерическими» науками. В результат большинство т.н. «образованных» людей хорошо знают «теорему Пифагора», но имеют весьма смутное представление о «золотом сечении».

В настоящее время исследуются математические теории связанные с принципами «золотого сечения»: новая теория гиперболических функций, новая теория чисел, новая теория измерения, теория матриц Фибоначчи и так называемых «золотых» матриц, новые компьютерные арифметики, новая теорию кодирования и новая теория криптографии. Суть новой науки, в пересмотре с точки зрения золотого сечения всей математики, начиная с Пифагора, что, естественно, повлечет в теории новые и наверняка очень интересные математические результаты. В практическом отношении – «золотую» компьютеризацию. А поскольку «математика гармонии» существенно дополнит классическую математику, вполне возможно придется пересмотреть и всю систему современного математического образования.

Заключение

В заключении попытаемся сформулировать наиболее популярное и понятное для обывателя определение «золотого сечения».

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

Нами был проведен исторический экскурс и разобрана математическая сущность «золотого сечения», рассмотрено строение «золотых фигур».

Знакомство с принципами «золотого сечения», помогает видеть гармонию и целесообразность окружающих нас творений природы и человека. Можно сделать выводы:

· во-первых, золотое сечение – это один из основных основополагающих принципов природы;

· во-вторых, человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.

Несмотря на неприятие «золотого сечения» современными «официальными науками, оно повсеместно используется в технике, во многих странах мира, в том числе в России и Украине, довольно крупные учёные продолжают изучать и искать практическое применение одному из «золотых» математических принципов.

Список литературы

1. Азевич А.И. Двадцать уроков гармонии: гуманитарно-математический курс. – М.: Школа-пресс, 1998.

2. Васюткинский Н.Н. Золотая пропорция. – М., 1990.

3. Волошинов А.В. Математика и искусство. – М., 1992.

4. Гарднер М. Математические головоломки и развлечения. – М., 1994.

5. Кованцов Н.И. Математика и романтика. – Киев, 1976.

6. МСЭ // под редакцией Б.А. Введенского. – М. 1959.

7. Пидоу Д. Геометрия и искусство. – М.: Мир, 1989.

8. Прохоров А.И. Золотая спираль // Квант. 1984. № 9.