Важно отметить, что статистика Dn распределена иначе, чем Dn (1.1), а статистика
Поскольку статистики (3.1), (3.2) при справедливости гипотезы имеют иные распределения, чем статистики Dn и
Таблицы распределений статистик (3.1), (3.2) к настоящему моменту составлены для многих семейств. Большинство из них рассчитаны методом случайных испытаний (методом Монте-Карло). Автор большинства этих расчетов М. Стефенс заметил, что зависимость результатов от объема выборки резко уменьшается, если вместо Dn ,
Табл. 3.1 Модифицированные критерии для проверки нормальности, оба параметра неизвестны
Статистика | Модифицированная форма | Верхние процентные точки0.15 0.10 0.05 0.025 0.01 |
Dn | | 0.775 0.819 0.895 0.955 1.035 |
| | 0.091 0.104 0.126 0.148 0.178 |
Табл. 3.2 Модифицированные критерии для проверки экспоненциальности, параметр неизвестен
Статистика | Модифицированная форма | Верхние процентные точки0.15 0.10 0.05 0.025 0.01 |
Dn | | 0.926 0.990 1.094 1.190 1.308 |
| | 0.149 0.177 0.224 0.273 0.337 |
Предельное (при n → ∞) распределение n
Если же математическое ожидание известно и равно, скажем, а, то по выборке приходится оценивать только дисперсию. В этом случае для больших z > 0
Эти приближенные формулы дают хорошие результаты для малых вероятностей и больших объемов выборок, то есть для вероятностей, начиная примерно с 0.20 (и меньше) и для объемов n, начиная примерно с 100 (и больше).
1.4 Критерии согласия χ2 Фишера для сложной гипотезы
Для проверки сложных гипотез может быть использована и соответствующая модификация критерия хи-квадрат Пирсона. Главные заслуги здесь принадлежат Р. Фишеру. Приведу одну из его теорем (сохраняя обозначения из теоремы К. Пирсона).
Теорема Фишера. Пусть n – число независимых повторений опыта, который может заканчиваться одним из r (r – произвольное натуральное число) элементарных исходов, скажем, А1, …, Аr. Пусть вероятности этих элементарных исходов известны с точностью до некоторого неопределенного, скажем, k-мерного параметра
асимптотически распределена по закону χ2 с r – k – l степенями свободы.
Существует много вариантов этой теоремы. Например, такое же, как выше, предельное распределение имеет статистика
где
Статистика χ2 из (4.1) (и ее варианты) называется статистикой хи-квадрат Фишера для сложной гипотезы.
Статистику (4.1) (и ее варианты) можно использовать для проверки описанной выше сложной гипотезы о параметрическом виде вероятностей в схеме Бернулли
где р1(·), …, рr(·) – заданы, а параметр
А именно, по наблюденным частотам т1, …, тr надо вычислить значение χ2 (4.1) либо (4.2) и затем сравнить его с критическими значениями распределения χ2 с числом степеней свободы (r – k – l), либо вычислить Р(χ2> χ2). Однако для использования аппроксимации хи-квадрат для распределения χ2 необходимо, чтобы число наблюдений было достаточно велико, и тем самым ожидаемые частоты прі(
Как следует из формулировки теоремы, объект ее применения – испытания с конечным числом исходов. Чтобы использовать ее в условиях другого эксперимента – например, для проверки гипотезы о типе непрерывного или дискретного распределения с бесконечным (или конечным, но большим) числом исходов – этот эксперимент надо предварительно превратить в схему Бернулли. Раньше уже говорилось, как это делается обычно – путем разбиения выборочного пространства на непересекающиеся области. Параметрический (зависящий от параметра
Понятно, что результат последующего применения критерия хи-квадрат (принять гипотезу, отвергнуть гипотезу) сильно зависит от описанного перехода. К этому следует добавить условие применимости распределения χ2, которое требует, чтобы ожидаемые частоты были достаточно большими. (условие на ожидаемые частоты часто приходиться заменять требованием, чтобы не были малы наблюдаемые частоты т1, …, тr.) становится ясно, что подготовка к применению критерия хи-квадрат в несвойственных ему составляет деликатную и не всегда простую проблему. Возникает даже опасность невольной подгонки выбираемого разбиения к желательному результату. Поэтому, строго говоря, разбиение пространства на области должно идти вне зависимости от результатов случайного эксперимента, т.е. вне влияния подлежащей обработке выборки.