1.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Математическая модель линейной непрерывной многосвязной системы в физических переменных "вход-выход" при детерминированных воздействиях может быть представлена векторным дифференциальным уравнением в символическом виде [*]:
где
Уравнение движения САУ составляется на основе ее структуры и математического описания, входящих в систему элементов, и имеет вид уравнения (1.1.1), где u(t)=z(t) и z(t) - вектор задающих воздействий на систему.
Уравнение движения САУ (1.1.1), записанное относительно у(t), называется уравнением автоматического управления (УАУ)
где
Для определения собственных движений системы (1.1.1), то есть когда u(t)=0 (или z(t)=0) и r(t)=0, и ее порядка необходимо записать характеристический определитель
и найти корни λj характеристического уравнения
Система будет устойчивой, если вещественная часть всех корней характеристического уравнения (нули функции
Общее решение неоднородной системы линейных дифференциальных уравнений может быть представлено в виде суммы общего решения yo(t) однородной системы и частного решения уч(t) исходной неоднородной системы
где: Cij - коэффициенты, определяемые начальными условиями дифференциальных уравнений; q - степень характеристического уравнения.
1.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 1.1.1
Построить сигнальный граф математической модели динамического режима САУ, записанной в переменных "вход–выход" в символической форме векторно-дифференциальным уравнением вида:
и определить характер свободного движения процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“.
Решение
Сигнальный граф рассматриваемой САУ, в соответствии с уравнением (1.2.1) представлен на рис. 1.1.
Независимость выходных переменных yi в САУ определяется ее физическими свойствами и математически выражается в виде диагональности матрицы процесса L(p). На рис.1.1 независимость выходных переменных между собой отображается не связанностью вершин у1 и у2 сигнального графа, то есть независимостью уравнений между собой. Это позволяет решать уравнения независимо (отдельно) друг от друга.
|
y1
y2
Рис. 1.1. Сигнальный граф системы уравнений (1.2.1)
Для определения переходного процесса по каналу “возмущающее воздействие r2 – выходная переменная y1“ запишем его уравнение динамики
которое представляет собой неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решение данного уравнения дается формулой (1.1.5) при j=2.
Для определения корней λ1,2 запишем характеристическое уравнение соответствующего однородного дифференциального уравнения
и решая его, получим
Задача 1.1.2
Математические модели динамических режимов управляемой и управляющей подсистем в переменных "вход–выход" в символической форме описываются векторно-дифференциальными уравнениями вида:
а) управляемая подсистема
б) управляющая подсистема
при нулевых начальных условиях, где yi(t), ui(t), ri(t), zi(t) – выходные, управляющие, возмущающие переменные и задающие воздействия соответственно.
Задание
1. Составить структурную схему многомерной САУ на основе принципа управления по отклонению и сформировать в ней отрицательные обратные связи.
2. Получить уравнение динамики многомерной САУ и ее характеристическое уравнение.
Решение
1.Структурная схема двумерной САУ с информационными каналами в подсистемах представлена на рис. 1.2. Настоящая схема синтезируется на основе принципа управления по отклонению и уравнений (1.2.12), (1,2.13).
При формировании отрицательных обратных связей в системе необходимо учитывать, что количество элементов обратного действия в контуре управления должно быть нечетным.
1.1. Контур управления выходным параметром у1(t).
Управляемая подсистема по каналу “
|