5. показано відкриту бікомутативність функтора
6. встановлена відкритість характеристичного відображення квадратних діаграм у випадку функторів
Практичне значення одержаних результатiв. Отриманi в дисертацiйнiй роботi результати мають теоретичний характер i можуть знайти застосування у функцiональному аналiзi, категорній топології, економічній теорії та теорії ігор.
Особистий внесок здобувача. Всi науковi результати, включенi у дисертацiю, одержанi здобувачем самостiйно.
Апробацiя результатiв дисертацiї. Основнi результати дисертацiї доповiдались:
1. на Львiвському мiському топологiчному семiнарi (м. Львiв, 2002-2005 рр.);
2. наміжнароднійкоференції "Geometric Topology: Infinite-Dimensional Topology, Absolute Extensors, Applications" (м.Львів, травень 2004 р.), доповідь: R.V. Kozhan, On Continuity of correspondences of probability measures in the category of Tychonoff spaces;
3. начетвертійміжнароднійалгебраїчнійконференції (м. Львів, серпень 2003 р.), доповідь: R.V. Kozhan, Open-multicommutativity of the functor of probability measures;
4. наміжнародномуконгресіматематиків "International Mediterranean Congress of Mathematics", Almeria (червень 2005р.), доповідь: R.V. Kozhan, Open-multicommutati-vity of normal functors.
5. наміжнароднійконференції "Analysis and related topics" (м.Львів, листопад 2005р.), доповідь: Р.Кожан,
Публiкацiї.Результати дисертацiї опублiковано у 3 статтях (без співавторів), які опублiковано у виданнях, включених у перелiк ВАК України, в яких слiд опублiкувати результати дисертацiї.
Структура та об'єм дисертації. Дисертація складається з переліку позначень, вступу, 3 розділів, висновків та списку використаних джерел. Обсяг дисертації --- 131 сторінки.
Автор висловлює щиру подяку науковому керівникові професорові М.М. Зарічному.
ОСНОВНИЙ ЗМІСТ ДИСЕРТАЦІЇ
У вступі обґрунтована актуальність дисертаційного дослідження, визначена мета і об’єкти дослідження. Основна частина дисертації поділена на 4 розділи.
У першому розділі "Огляд літератури і результатів дисертації" робиться огляд літератури і дається короткий виклад результатів дисертаційної роботи.
У другому розділі "Поняття та критерії відкритої мультикомутативності" вводиться означення основного поняття, яке вивчається в дисертації – відкритої мультикомутативності коваріантних функторів.
Теорема 2.4.23.Нехай
Наступна теорема є основним результатом цього розділу. Вона встановлює впіввідношення між поняттями відкритої мультикомутативності та скінченної відкритої мультикомутативності слабко-нормальних функторів в категорії Comp.
Теорема 2.4.26.Нехай слабко-нормальний функтор
(і)
(іі)
Наслідок 2.4.27. Нехай
(і)
(іі)
Наслідок 2.4.28.Нехай
Природньо постає задача дослідження властивостей функторів, які зберігають відкрито-мультикомутативні конуси над нескінченними графами.
Наступна теорема являє собою критерій
Теорема 2.5.3. Кожний слабко нормальний відкрито мультикомутативний функтор
В третьому розділі “Відомі функтори в категорії Comp та відкрита мультикомутативність” досліджуються конкретні приклади коваріантних функторів категорії Comp на відкриту мультикомутативність. Зокрема, розглядаються функтори ймовірнісних мір
Застосовуючи критерій відкритої мультикомутативності ми легко отримуємо
Твердження 3.2.1. Функтор ймовірнісних мір
З нормальності та відкритості функтора ймовірнісних мір в категорії Comp випливає
Наслідок 3.2.2.Функтор
Покажемо відкриту мультикомутативність функторів
Твердження 3.3.1. Функтори
З попереднього твердження легко випливає відкрита мультикомутативність вищезгаданих функторів.
Твердження 3.3.2. Функтори
Покажемо відкриту мультикомутативність функтора
Твердження 3.3.4. Функтор