Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Инверсия плоскости
в комплексно сопряженных координатах
Выполнила: студентка V курса
математического факультета
Дмитриенко Надежда Александровна
Научный руководитель:
старший преподаватель кафедры
алгебры и геометрии
Александр Николаевич Суворов
Рецензент:
Допущена к защите в государственной аттестационной комиссии
«___»__________2005 г. Зав. кафедрой В.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение........................................................................................................... 3
Глава 1. Основные положения теории инверсии........................................... 4
1.1. Общие сведения о комплексной плоскости......................................... 4
1.2. Определение инверсии – симметрии относительно окружности........ 5
1.3. Формула инверсии в комплексно сопряженных координатах......... 11
1.4. Неподвижные точки и окружность инверсии.................................... 11
1.5. Образы прямых и окружностей при обобщенной инверсии............ 12
1.6. Свойства обобщенной инверсии........................................................ 19
Глава 2. Применение инверсии при решении задач
и доказательстве теорем................................................................. 30
2.1. Применение инверсии при решении задач на построение............... 30
2.2. Применение инверсии при доказательстве........................................ 41
Заключение.................................................................................................... 43
Библиографический список........................................................................... 44
Введение
В наш век современных технологий так и хочется привлечь компьютер для решения задач, в частности, геометрических. Было бы замечательно, если бы от пользователя требовалось только занести в программу нужные данные, а последняя сама бы все рассчитала и выдала, к примеру, радиус и центр искомой окружности. Но вся проблема в том, что программа может работать только с координатами. И есть смысл перевода наиболее эффективных с точки зрения решения задач преобразований, в число которых входит и инверсия, на язык координат. Наиболее просто это получается на комплексной плоскости. Изучению преобразования инверсии комплексной плоскости и посвящена эта дипломная работа.
Цель работы состоит в следующем: обобщить и систематизировать основные факты об инверсии комплексной плоскости и показать применение этого преобразования при решении задач и доказательстве теорем.
Поставленная цель предполагала решение следующих задач:
· вывод комплексной формулы инверсии;
· доказательство основных свойств инверсии на комплексной плоскости;
· решение нескольких задач при помощи инверсии комплексной плоскости;
· доказательство ряда теорем при помощи инверсии комплексной плоскости.
Оказалось, что не так много специальных работ по теме. Инверсия комплексной плоскости оказалась крайне слабо освещена в литературе по сравнению с инверсией евклидовой плоскости. Поступали следующим образом: брали известный факт из евклидовой плоскости, а потом доказывали его методом комплексно сопряженных координат. Чаще всего такие доказательства были понятнее и короче, чем исходные.
Глава 1
Основные положения теории инверсии
1.1. Общие сведения о комплексной плоскости. Зададим на плоскости прямоугольную декартову систему координат 0xy. Тогда каждому комплексному числу z, представленному в алгебраической форме
, можно однозначно поставить в соответствие точку М плоскости с координатами . Комплексное число z называют комплексной координатой соответствующей точки М и пишут: .Следовательно, множество точек евклидовой плоскости находится во взаимно однозначном соответствии с множеством комплексных чисел. Эту плоскость называют плоскостью комплексных чисел.
Все необходимые сведения об этой плоскости очень хорошо даны в книге Я. П. Понарина [3]. Здесь приведем лишь некоторые формулы, взятые из того же источника, использованные в работе.
Расстояние между двумя точками с координатами а и b равно
.Уравнение прямой в канонической форме:
, .Уравнение окружности с центром в точке s и радиусом r:
. Также часто используют запись , , , где центр , радиус .Скалярное произведение векторов:
.Коллинеарность трех точек с координатами а, bи с:
.Критерий коллинеарности векторов:
.Расстояние от точки с координатой z0 до прямой
, : .Критерий параллельности двух прямых
и , заданных в канонической форме: .Критерий перпендикулярности двух прямых
и , заданных в канонической форме: .Двойное отношение четырех точек плоскости с координатами а, b, с иd:
; аргумент wравен ориентированному углу между окружностями abc и abd.Критерий принадлежности четырех точек одной окружности или прямой:
.Критерий ортогональности окружностей
, и , : .Параллельный перенос на вектор с координатой r:
.Гомотетия с центром sи коэффициентом s:
, .Осевая симметрия с осью симметрии
, где : .Центральная симметрия с центром
: .1.2. Определение инверсии – симметрии относительно окружности.[1]
Определение 1. Углом между двумя окружностями называется угол между касательными к окружностям в точке их пересечения.
Если окружности не имеют общих точек, то угол между ними не определен.
Определение 2. Углом между окружностью S и прямой l называется угол между прямой l и касательной к окружности S в точке пересечения этой окружности с l.
Опять же, если прямая и окружность не имеют общих точек, то угол между ними не определен.
Из определения 2 следует, что окружности, центры которых лежат на данной прямой l, и только эти окружности, перпендикулярны к прямой l.
Теорема 1. Все окружности, перпендикулярные прямой lи проходящие через точку А, проходят и через точку В, симметричную точке А относительно прямой l.
□ Рассмотрим произвольную окружность с центром на прямой l, проходящую через точку А. Введем систему координат таким образом, что прямая l является действительной осью, а начало координат располагается в центре нашей окружности, и радиус ее равен 1.