Смекни!
smekni.com

Инверсия и ее применение (стр. 5 из 9)


Рис. 31

Покажем это. Обозначим

через с1,
через с2; отсюда
= с1,
= с2. Поэтому ОР
ОQ = с1
с2
ВD
АС.

Опустим из В и D перпендикулярны ВВ1 и DD1 на АС.

ТогдаАС

ВD = АС
В1D1 = (AD1 + D1C)
(AD1 - AB1) = (AD1 +D1C)
(AD1 – D1C) = AD12 – D1C2 = (AD2 – D1D2) – (CD2 – DD12) = AD2 – CD2 = l2 – d2.

Поэтому ОР

ОQ = с1
с2
( l2 – d2). Обозначим с1
с2
( l2 – d2) через r2. тогда ОР
ОQ = r2, так чтобы точки Р и Q инверсны относительно окружности щ (О,r). Когда точка Р опишет какую-либо линию, точка Q опишет инверсную ей линию. В частности, если точка Р будет перемещаться по окружности, проходящей через точку О, инверсная ей точка Q будет перемещаться по прямой.

Для удобства инверсного преобразования окружности, проходящей через центр инверсии, присоединяют к четырем рассмотренным стержням еще один стержень МР, который шарнирно связан со стержнем АD в точке Р и может вращаться около неподвижной точки М, причем МР = МО. Расположение стержней в механизме видно из рисунка 32.


Рис. 32


2. Инверсия и ее применение

2.1 Решение задач на построение методом инверсии

Сущность метода инверсии заключается в следующем.

Наряду с данными и искомыми фигурами рассматриваем фигуры, инверсные им или их частям. Иногда этого оказывается уже достаточно для нахождения таких связей между искомыми и данными, которые нужны для решения задачи. В большинстве случаев решение задачи сводится к построению фигуры, инверсной искомой, в предположении, что уже построена фигура, инверсная данной. Эта последняя задача, при удачном выборе базисной окружности, может оказаться проще данной задачи. Построив фигуру, инверсную искомой, затем строят искомую фигуру. Метод инверсии дает возможность решить ряд наиболее трудных конструктивных задач элементарной геометрии.

Недостатком этого метода является его громоздкость, связанная с необходимостью выполнить большое число построений.

Рассмотрим несколько примеров.

Пример 1. Через две данные точки А и В провести окружность, ортогональную данной окружности щ (О,r) (рис. 33).

Анализ. Если примем окружность щ за базисную окружность, то при инверсии искомая окружность г преобразуется в себя, а точки А и В перейдут в точки Аґ и Вґ на этой окружности. Но окружность г вполне определяется, если известны три точки на ней, например А, В и Аґ. Отсюда вытекает построение.

Построение.

1) Строим точку Аґ, инверсную точке А относительно окружности щ.

2) Строим окружность г, проходящую через точки А, В и Аґ. Г – искомая окружность.

Доказательство. Доказательство вытекает из анализа и построения.


Рис. 33

Исследование. Если точка А лежит на окружности щ, то точка Аґ совпадает с точкой А и указанный путь решения непригоден. В этом случае нужно провести аналогичное построение относительно точки В. если обе точки А и В лежат на окружности щ, то построение можно выполнить так: через А и В проводим касательные к окружности щ и отмечаем точку их пересечения О1. О1 – центр искомой окружности.

Эти построения непригодны, если точки А, В и О расположены на одной прямой. Если при этом точки А и В не инверсны, то задача не имеет решения. Если же точки А и В инверсны относительно окружности щ, то задача имеет бесконечное множество решений: любая окружность, проходящая через точки А и В, ортогональна окружности щ.

Пример 2. Даны: точка О и две не проходящие через нее прямые a и b. Провести через точку О такой луч, чтобы произведение его отрезков от точки О до точек пересечения с данными прямыми было равно квадрату данного отрезка.

Анализ. Пусть О – данная точка, а и b – данные прямые, ОАВ – искомый луч, так что ОА

ОВ = r2, где r – данный отрезок (рис. 34).

Рис. 34

Инверсия относительно окружности щ (О, r) переведет точку А в точку В, а прямую а – в некоторую окружность аґ, проходящую через точку В. таким образом, В ≡ аґ*b.

Построение. Строим последовательно:

1) Окружность щ (О, r);

2) Образ аґ прямой а в инверсии относительно щ;

3) Точку В ≡ аґ*b;

4) Луч ОВ, который и удовлетворяет условию задачи.

Доказательство. Пусть А ≡ ОВ

а. Тогда А – прообраз точки В в инверсии относительно щ (О, r), так как прямая а – прообраз окружности аґ. Следовательно, по определению инверсии, ОА
ОВ = r2.

Исследование. Возможны следующие случаи:

1) окружность аґ пересекает прямую b; два решения;

2) окружность аґ касается прямой b; одно решение;

3) окружность аґ не имеет общих точек с прямой b; решений нет.

Так как искомая точка В обязательно соответственна точке А в инверсии относительно щ (О, r), то точка В должна быть общей точкой прямой b и окружности аґ. Отсюда следует, что других решений, кроме найденных, задача не может иметь.

Пример 3. Построить окружность, касательную к данной окружности г и проходящую через две данные точки А и В вне данной окружности.

Анализ. Пусть б (рис. 35) – искомая окружность. Желательно преобразовать фигуру так, чтобы окружность б (или окружность г) преобразовалась в прямую.

Рис. 35

С этой целью примем точку В за центр инверсии, а отрезок ВА – за радиус инверсии. Тогда окружность г преобразуется в некоторую окружность гґ, точка А преобразуется в себя, искомая окружность б – в прямую бґ. Прямая бґ должна пройти через точку А, а также касаться окружности гґ, так как окружность б касается окружности г (рис. 36). Таким образом, задача сводится к построению касательной из построенной точки (Аґ) к построенной окружности (гґ).

Построение. Строим последовательно:

1) Окружность щ с центром в точке В радиуса ВА;

2) Окружность гґ, инверсную окружности г относительно окружности щ;

3) Прямую бґ, проходящую через точку А и касающуюся окружности гґ;

4) Окружность б, инверсную прямой бґ относительно окружности щ. Окружность б искомая.


Рис. 36

Доказательство. Прямая бґ касается окружности гґ, поэтому соответствующая ей окружность б касается соответственной окружности г. Прямая бґ проходит через точку А, и поэтому окружность б проходит через ту же точку; во всех случаях, когда прямая бґ не проходит через центр инверсии, то есть через точку В.

Исследование. Из четырех шагов построения шаги 1) и 2) всегда выполнимы, притом однозначно. Рассмотрим построение 3).

Проведение касательной к окружности гґ через точку А зависит от расположения точки А относительно окружности гґ. Можно допустить три предположения: а) точка А на окружности гґ; б) точка А внутри окружности гґ; в) точка А вне окружности гґ.

Случай а) невозможен, так как из Аґ Є гґ следовало бы А Є г, что противоречит условию задачи.

Докажем, что случай б) также невозможен. Применим для этого доказательство «от противного». Допустим, что точка А располагается внутри окружности гґ (рис. 37). Так как точка В, по условию, вне г, то В также вне гґ (это следует из способа построения окружности гґ). Поэтому луч ВАґ встретит окружность гґ в двух точках, причем одна из них внутри окружности щ, а другая вне ее. Обозначим внутреннюю точку пересечения через Рґ, а внешнюю – через Qґ. При инверсии точки Рґ, Qґ и Аґ преобразуются в точки Р, Q и А, причем Q внутри щ, Р вне щ, А на щ, так что А лежит между Р и Q. Окружность гґ, проходящая через Рґ и Qґ, перейдет в окружность г, проходящую через Р и Q. И так как точка А принадлежит хорде РQ окружности г, то А внутри г, вопреки условию задачи.