Для упрощения системы (1) введем величины
Поэтому
Из (2) получим
Соотношение (2) иногда называют законом сохранения потока заявок. Оно говорит о том, что интенсивность входящего потока заявок в i-тую СМО, i=1,...,n, в стационарном режиме равна интенсивности входящего потока заявок из этой системы.
Теорема1. (Джексона) Стационарное распределение может быть найдено в виде:
Составив и решив систему дифференциально-разностных уравнений, найдется вид функции распределения
для случайного процесса
Так что нахождение функций
решит поставленную задачу.
Дана открытая марковская сеть массового обслуживания, состоящая из трех подсистем. Состояние сети в момент времени t определяется вектором
число заявок в i-ой подсистеме в момент времени t. Входящий поток является пуассоновским потоком с параметром
Заявки поступают из общего потока заявок во второй узел и первый узел с вероятностями
Предположим, что существует стационарное распределение
P
+
+
+
Для того, чтобы найти решение уравнения равновесия
Таким образом, нам необходимо найти
Из системы
Матрица перехода имеет вид:
Тогда, получим
где Io - нулевой вектор.
Итак, стационарное распределение найдено с точностью до постоянного множителя P (Io).
Для исследования эргодичности применим эргодическую теорему Фостера (теорема 1 из 1.1)
Теорема (Эргодическая теорема Фостера).
Регулярная Марковская цепь с непрерывным временем и счетным числом состояний эргодична, если она неприводима и система уравнений
имеет нетривиальное решение
При этом существует единственное стационарное распределение, которое совпадает с эргодическим.
Рассмотрим условия этой теоремы.
Регулярность следует из того, что