Смекни!
smekni.com

Изгибаемые многогранники. Октаэдр Брикара. Флексор Штеффена (стр. 5 из 6)

Идея Брикара очень остроумна. Возьмем в пространстве четырехугольник ABCDс попарно равными противоположными сторонами: АВ = CD, ВС = = AD. Если ABCDлежит в плоскости, то это - знакомый нам параллелограмм. Пусть ABCD - пространственный четырехугольник, т.е. вершины А, В, С, Dне лежат в одной плоскости. Его диагонали АС и BDлежат на скрещивающихся прямых. Проведем через середины О1 и О2 диагоналей прямую (рис. 20). Так как в четырехугольнике ABCDпротивоположные стороны равны, то прямая, как нетрудно показать, перпендикулярна обеим диагоналям.

В силу этой перпендикулярности при повороте вокруг прямой на 180° вершины A и С, а также В и Dменяются местами и, следовательно, четырехугольник ABCDпереходит в себя. Заметим, что в предельном случае, когда многоугольник становится плоским параллелограммом, точки О5 и О2 сливаются в одну точку, а прямая переходит в прямую, проходящую через точку пересечения диагоналей параллелограмма перпендикулярно его плоскости.

Симметрия

Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани.


Рис.21

Возьмем вне прямой какую-нибудь точку Sи построим четыре треугольника SAB, SBC, SCDи SDA(рис. 21 а). Эти треугольники (точнее, их плоскости) образуют четырехгранный угол. Из школьного курса геометрии известно, что плоские углы трехгранного угла задают его двугранные углы, а следовательно, и весь трехгранный угол однозначно. Однако если число граней у многогранного угла больше трех, то такой однозначности нет. Очевидно, что четырехгранный угол SABCDпри фиксированных плоских углах допускает непрерывную деформацию (изгибание). При таком изгибании четырехугольник ABCDдеформируется в четырехугольник с соответственно такими же сторонами и соответствующей осью симметрии.

При повороте вокруг оси на 180° четырехгранный угол SABCDпереходит в конгруэнтный угол SXCDAB(рис. 21 б). Совокупность 8 треугольников удовлетворяет всем трем условиям в определении многогранника. Правда, некоторые грани этого многогранника пересекают друг друга.

Объем

При изгибании октаэдр Брикара не изменяет своего объема. Его можно вычислить с помощью теоремы Сабитова. Она устанавливает связь между длинами ребер многогранника и его объема. Существует многочлен:


коэффициенты a1,…,an которого выражаются при помощи четырех арифметических действий через длины ребер l1,…,lp многогранника. Сделав подстановку в формулу получим многочлен F(x) с конкретными числовыми коэффициентами. Теорема Сабитова утверждает, что объем данного многогранника (октаэдра Брикара) есть один из корней этого многочлена.

7 ФЛЕКСОР ШТЕФФЕНА

Построение модели. Для построения модели флексора Штеффена необходимо изготовить из картона две многогранных поверхности Р1 и Р2, изображенных на рисунке 22 (их построение описано ранее).

рис. 22. Многогранная изгибаемая поверхность Р1

Далее следует нарисовать на картоне фигуру, изображенную на рис. 23, которая состоит из двух треугольников. Буквы a и e обозначают длины соответствующих сторон. К выбранному ранее значению a = 12 хорошо подходит

e = 17. Вырежьте нарисованную фигуру по сплошным линиям и согните по пунктирной. Получившуюся незамкнутую многогранную поверхность обозначим через R(рис. 23).

рис. 23. Многогранная изгибаемая поверхность R

Теперь все готово для склеивания многогранной поверхности Штеффена.

Зафиксируйте положение многогранной поверхности Rв трехмерном пространстве так, чтобы расстояние между точками Lи N было равно расстояние между точками A1 (D1) и C1 (C2).

Совместите точки K и E1, A1 и L, D1и N и склейте многогранные поверхности P1 и Rвдоль ребер A1E1 и KL, а также E1D1и KN (рис. 24). Назовем полученную многогранную поверхность Q.

Аналогично совместите точки E2 и M, D2и L, A2 и N и склейте многогранные поверхности P2 и Q вдоль ребер A2E2 и MN, а также D2E2и LM (рис. 24).

рис. 24. Совмещение поверхностей Р1, Р2 и R


Свойства изгибаемость

Рис.25

Возьмём «зарубку Коннелли», изображённую на рис. 25.

Она представляет собой октаэдр Брикара второго типа с удалёнными гранями CDS и CDN. Её нетривиальные изгибания можно представить как вращение вершины N вокруг неподвижной прямой DC, при неподвижных отрезках SD и SC (так как расстояние DC постоянно как длина удалённого ребра изгибаемого октаэдра, три точки S, D, C можно считать неподвижными). При вращении N вершины A и B перемещаются соответственным образом. Для данного рисунка если N уходит влево (вправо), то A смещается вниз (вверх),

B уходит вверх (вниз), но вообще направления их движений зависят от конкретных длин рёбер. Рассмотрим движения точки N более подробно, для чего введём следующую систему координат: направим ось Ox вдоль прямой DC, от D к C, плоскость SDC примем за плоскость xOz, направив ось Oz вверх, начало координат поместим в середине отрезка DC (см. рис. 25). Пусть длина ребра DC равна 2a, длина SD=SC=b<a. Тогда D, C, S имеют, соответственно, координаты

.

Точка N вращается вокруг оси Ox, на постоянном расстоянии d от D и C. Тогда её координаты суть

(0, d2-a2 sinj, d2-a2 cosj). (1)

Возьмём теперь второй экземпляр той же самой «зарубки Коннелли», идентичный рассмотренному. Расположим их сначала с полным совпадением. Если затем в первой «зарубке» точку N повернём влево, а во второй — вправо, то точки D, C, S останутся на месте, а точки N, A, B разойдутся, приняв соответственно новые положения N1, A1, B1 и N2, A2, B2.

Рис.26

Зафиксируем некоторые положения точек N1 и N2, симметричные относительно неподвижной плоскости DSC и склеим (отождествим) в этом положении рёбра SD и SC из первой «зарубки» с такими же рёбрами из второй «зарубки». Получится многогранник M, изображённый на рис. 26 и имеющий край N1DN2C.

Далее вершины N1 и N2 можно вращать согласованно так, чтобы расстояние N1N2 оставалось постоянным. Следовательно, отрезок N1N2 тогда можно принять за ребро и если мы закроем отверстие с краем N1DN2C двумя треугольниками N1DN2 и N1CN2, то полученный многогранник будет замкнутым, причём при соответственно подобранных размерах сторон и положениях вершин N1 и N2 он будет без самопересечений.

Симметрия

Заметим, что изгибаемый многогранник Штеффена обладает симметрией. Он симметричен относительно прямой, проходящей через точки F и середину ребра KM.

Объем

Сразу же после построения первых флексоров было замечено, что при изгибании их объёмы остаются постоянными.

Доказать постоянство объема флексора можно с помощью теоремы российского математика Иджада Хаковича Сабитова, предложенной в 1996 году.

Чтобы понять ее смысл, вспомним формулу Герона. Она выражает площадь треугольника лишь через его стороны:

, где полупериметр
.

Предположим сначала, что все грани многогранника — треугольники[2]. В этом случае длины его ребер однозначно определяют форму треугольных граней. Поэтому, если многогранник выпуклый, то длины ребер однозначно определяют форму многогранника, так как по теореме Коши под многогранником понимается множество M плоских многоугольников - граней, расположенных в пространстве так, что каждая сторона любого из них является стороной в точности ещё одного многоугольника. А если у многогранника однозначно задана форма, следовательно, и его объем определен также однозначно.

Теорема Сабитова устанавливает связь между длинами ребер многогранника (с треугольными гранями) и его объемом. Пусть дан многогранник, тогда можно построить специальный многочлен

F(x) = хп + а1хп-1 +...+ ап,

коэффициенты а1,…,ап которого выражаются через длины ребер l1,…,lpмногогранника. Заметим, что то, как коэффициенты многочлена выражаются через длины ребер, зависит собственно не от длин ребер и величин углов многогранника, а от его комбинаторного типа, т.е. от того, сколько ребер у граней, сколько граней у многогранника, как грани сходятся в вершинах и т.п. Подставляя теперь в коэффициенты а1,...,ап вместо l1,…,lpчисленные значения длин ребер данного многогранника, получим многочлен F(х) с конкретными числовыми коэффициентами. Теорема Сабитова утверждает, что объем данного многогранника есть один из корней этого многочлена. Если бы объем флексора при изгибании менялся, то это должно было бы происходить непрерывно. А так как объем является корнем многочлена F(x), то это должен быть один и тот же корень. Таким образом, объем многогранника должен оставаться неизменным.