Окончательный вывод в случае «-»: cиb – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением» и его «Выводом».
Т.к. «Общие свойства для с иb» ( сb= СВ = const´, с – b= - С + В = const´´, с – b= - 2К = const´´´ ) выполняются, то Случаи27 и «-» имеют одинаковый вид окончательных решений уравнения (15), т.е. cиb – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых
********
«Новый» случай 28
(Отличающийся «новым свойством » от случая 14: с = -С, b= -В, n= N,
K)
Случай 28. Случай «+».
с = - В (16-B), с = С (16),
b= - С (17-C), b= В (17),
n= N(18),n= N(18),
K(19),
K(19).
Окончательный вывод в случае «+»: cиb – четные, чего не должно быть.
Воспользуемся вышерассмотренным «Соображением » и его «Выводом».
Т.к. «Общие свойства для с иb(сb= СВ = const´, с – b= С - В = const´´, с – b= 2К = const´´´ ) выполняются, то Случаи28 и «+» имеют одинаковый вид окончательных решений уравнения (15), т.е. cиb – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых
********
Вывод
1. Таким образом, «Новые» случаи 23,…, 28 новых возможных решений уравнения (15) не выявили.
2. Условия 1 и 2 ( продолжения ) Утверждения(1) нами рассмотрены.
*********
Итак, уравнение (15) , если c и b – взаимно простые целые нечетные числа, имеет решение (после анализа всех полученных решений) только в следующих целых числах:
а) ;
;
;
;
б) ;
;
;
.
А это в свою очередь означает, что и рассматриваемое уравнение (
,
- натуральные числа, где
при
- натуральном) может иметь целые решения либо при
, либо при
.
************
Вывод: 2-я часть «Утверждения 1» доказана.
В результате исследования уравнения (1) мы имеем:
Вывод 1. Уравнение (1) (
,
- натуральные числа,
при
- натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах
,
и
таких, чтобы
- было четным,
и
- нечетными целыми числами.
Возможны случаи: либо , либо
.
*******
В качестве подтверждения можно рассмотреть такой пример.
Пример
Нетрудно доказать вышерассмотренным методом, что уравнение (42), где
При «Исключением» являются
, или
.
(При «Исключением» являются, например,
или
,при которых а = 2 ивыполняется тождество
(этот случай рассматривать не будем).
Действительно, решениями уравнения, например, a3 = c2 - b2 (43)являются (это хорошо известно в теории чисел) следующие выражения:
a = α2 – δ2 - четное число при α и δ– нечетных или четных.
c = α3 + 3αδ2 - четное число при α и δ – нечетных или четных.
b = 3α2δ + δ3 - четное число при α и δ – нечетных или четных.
(Такой же результат получается (a, c, b – четные числа) для любого уравнения
(42), где
- натуральное.)
Однако вернемся к уравнению (43) a3 = c2 - b2.
«Исключением» являются следующие его решения:
1. b = ±1; c = ±3; a = 2 (при r = 1 и = ±3);
2. b =
при которых получаем соответственно тождества:
1. 23 ≡ (±3)2 – (±1)2
2. (-2)3 ≡ (±1)2 – (±3)2
**********
Примечание.
1. Великая теорема Ферма для
2. Для степени p = 2 в уравнении такого «противоречия» при оценке четности чисел a, b, c не возникает.
3. Данное «Утверждение 1» автоматически доказывает справедливость Великой теоремы Ферма для показателя