Смекни!
smekni.com

Динамика развития некоторых понятий и теорем теории вероятностей (стр. 9 из 12)

,

где

–любое малое число.

Доказательство.

Рассмотрим независимые случайные величины:

–число появлений события A в первом опыте;

–число появлений события A во втором опыте, и т.д.

Все эти величины прерывны и имеют один и тот же закон распределения, выражаемый рядом вида:

0 1
q p

т.к. событие A наступает с вероятностью p и не наступает с вероятностьюq

.

Вычислим математическое ожидание каждой из величин

:

, дисперсию:

.

удовлетворяют условиям теоремы Чебышева, т.е. можем применить неравенство Чебышева:

.

Т.к.

,
, а
, то получаем выражение:

.

Отсюда и следует справедливость доказываемого неравенства:

,

где

–малое число при
.

Что и требовалось доказать.

3.4 Закон больших чисел для зависимых случайных величин

А.А. Марков под этим законом понимал закон, «в силу которого с вероятностью, сколь угодно близкой к достоверности, можно утверждать, что среднее арифметическое из нескольких величин, при достаточно большом числе этих величин, будет произвольно мало отличаться от средней арифметической их математических ожиданий». При таком понимании закона больших чисел и теорема Бернулли и теорема Пуассона и теорема Чебышева будут его различными формами. Такое понимание теперь общепринято.

Чебышев распространил закон больших чисел на независимые случайные величины с равномерно ограниченными дисперсиями:

.

Марков расширил условия применимости этого закона. В работе «Распространение закона больших чисел на величины, зависящие друг от друга» Марков привёл следующую теорему [1,6].

Теорема.

Если последовательность взаимно независимых случайных величин

такая, что

, то

.

Доказательство.

Рассмотрим величину

,
.

Очевидно, что

и величина
ограничена
<c, c-некоторое число. Применим теперь неравенство Чебышева к
:

, или

.

Переходя к пределу получаем:

.

Что и требовалось доказать.

В этой работе Марков доказывает, что закон больших чисел применим к

, если
и связь величин такова, что увеличение любой из них влечёт за собой уменьшение математических ожиданий остальных.

Марков делает замечание: «к тому же заключению о применимости закона больших чисел не трудно прийти и в случае, когда математическое ожидание

при всяком
уменьшается с увеличением суммы
«.

Марков рассматривает последовательность случайных величин, связанных в цепь. Такие цепи зависимых величин получили название марковских цепей. В этой работе Марков рассматривает простую цепь (простая цепь маркова – последовательность случайных величин, каждая из которых может принимать любое число исходов, причём вероятности исходов при

-м испытании получают определённые значения, если известен только результат
-го испытания), причём все
принимают значения только 0 или 1. Он устанавливает, что эти случайные величины также подчинены закону больших чисел. Нужно отметить, что в работе Марков требовал, чтобы для всех вероятностей перехода выполнялось условие
. Но выводы Маркова остаются справедливыми, если вместо такого сильного ограничения требовать только, чтобы это условие выполнялось хотя бы для одной вероятности при любом
.

В конце своей работы Марков делает вывод, что независимость величин не составляет необходимого условия для существования закона больших чисел.

В настоящее время используется условие, аналогичное условию Маркова, но уже не только достаточное, но и необходимое для применимости закона больших чисел к последовательности произвольных случайных величин [4].

Теорема.

Для того чтобы для последовательности

(как угодно зависимых) случайных величин при любом положительном
выполнялось соотношение

, (3.4.1)

Необходимо и достаточно, чтобы при

.(3.4.2)

Доказательство.

Предположим сначала, что (2) выполнено, и покажем, что в этом случае выполнено также (1). Обозначим через

функцию распределения величины
.

Легко проверить следующую цепочку соотношений:


Это неравенство доказывает достаточность условия теоремы.

Покажем теперь, что условие (2) необходимо. Легко видеть, что

Таким образом,

.

Выбирая сначала

сколь угодно малым, а затем
достаточно большим, мы можем сделать правую часть последнего неравенства сколь угодно малой.

Что и требовалось доказать.

3.5 Усиление закона больших чисел. Появление необходимого и достаточного условий применимости закона больших чисел

В 1923 г. А.Я. Хинчин установил закон повторного логарифма, который является своеобразным обобщением и усилением закона больших чисел[1]. Рассмотрим полученные им результаты.

Согласно теореме Бернулли, при

для любого


В 1909 г. Борель для

доказал, что
, т.е. что
для больших
с подавляющей вероятностью должна быть мала в сравнении с
,
.