Смекни!
smekni.com

Геометрия Лобачевского (стр. 9 из 13)

В геометрии на сфере большие окружности играют роль прямых на плоскости. Здесь есть определенная аналогия: для любых двух точек А, ВÎS существует большая окружность, проходящая через эти точки. Но есть и отличие: большая окружность единственная только тогда, когда точки А и В не являются диаметрально противоположными. Далее, на плоскости Евклида и на плоскости Лобачевского существуют непересекающиеся прямые, тогда как на сфере любые две различные большие окружности пересекаются в двух точках (диаметрально противоположных).

Известно, что любая большая окружность Qсферы S делит ее на две части, которые называются полусферами, а сама окружность Q— краем этих полусфер. В геометрии на сфере полусфера играет ту же роль, что и полуплоскость в планиметрии.

Пусть А и В — две диаметрально противоположные точки сферы S, АСВ и ADB— две какие-либо полуокружности с концами в точках А и В, а фигура Г — объединение этих полуокружностей (рис.3-8).


Можно показать, что фигура Г делит фигуру S\Г на две части D' и D" (на рис. 3-8 одна из этих частей заштрихована). Каждая из фигур D1=D’ÈГ, D2=D"ÈГ называется двуугольником с вершинами в точках А и В.

Данные полуокружности АСВ и ADBназываются сторонами этих двуугольников. Двуугольник — аналог угла на плоскости: двуугольник является или пересечением, или объединением двух полусфер, края которых не совпадают. Ясно, что двуугольник можно рассматривать как пересечение сферы S с двугранным углом С× АВ×D. Линейный угол этого двугранного угла называется углом данного двуугольника. Его можно рассматривать как угол между касательными в точке А (или В) к большим окружностям, содержащим стороны двуугольника. Если этот угол прямой, то двуугольник называется прямоугольным.

Пусть Q1 и Q2 — две большие окружности. Q1∩Q2 ={А,В}. Мы имеем здесь две пары вертикальных двуугольников, высекаемых на сфере S двумя парами вертикальных двугранных углов, полученных при пересечении плоскостей s1ÉQ1 и s2ÉQ2. Если один из этихдвуугольников прямоугольный, то и остальные три прямоугольные. В этом случае большие окружности Q1 и Q2 называются перпендикулярными: Q1^Q2. Ясно, что окружности Q1 и Q2 перпендикулярны тогда и только тогда, когда плоскости s1 и s2перпендикулярны.

Если Q — большая окружность, а АВ — диаметр сферы, перпендикулярный к плоскости этой окружности, то точки А и В называются полюсами окружности Q. Если точка M1 не является полюсом окружности Q, то существует, и притом единственная, большая окружность Q2, проходящая через точку M1 и перпендикулярная окружности Q. Чтобы получить эту окружность Q2, надо пересечь сферу S плоскостью, которая проходит через прямую ОМ1 перпендикулярно плоскости окружности Q1. Если же точка M1 является полюсом большой окружности Q1, то любая большая окружность, проходящая через точку M1, перпендикулярна окружности Q1. В этом снова проявляется отличие сферической геометрии от геометрии на евклидовой плоскости (или на плоскости Лобачевского), где через любую точку плоскости проходит единственная прямая, перпендикулярная к данной прямой.

2. Возьмем две точки A,BÎSи рассмотрим большую окружность Q, проходящую через эти точки (рис. 3-9). Окружность Q является объединением двух своих дуг

и
с концами в точках А и В. Длина той из этих двух дуг, которая не больше полуокружности, называется сферическим расстоянием между точками А и В и обозначается через d(A,B). Следовательно, для любых двух точек сферы S имеем d(A,B)£pr.

Пусть

меньше полуокружности, и, значит, d(A,B) — длина этой дуги. Обозначим через а величину центрального угла АОВ, опирающегося на дугу АМВ, и через r(А,В) – длину отрезка АВ. Как известно,

d(A,B) = ar. (1)

Из треугольника АОВ (рис. 3-9) находим:

(2)

Из формул (1), (2) следует:

(3)

3. Движением сферы называется всякое изометрическое отображение этой сферы на себя, т. е. такое отображение f: S®S, которое удовлетворяет условию: каковы бы ни были точки А и В сферы, d(A,B) = d(f(A), f(B)). Из формулы (3) следует, что в этом случае r(А,В)=r(f(А), f(В)). Следовательно, любое движение fсферы S порождается некоторым движением f0пространства, причем f0(О)=О. Обратно: любое движение g0пространства, оставляющее точку О инвариантной, порождает определенное движение сферы S.

Отсюда заключаем, что множество всех движений сферы S является группой, которая изоморфна стационарной подгруппе Н0 точки О в группе движений пространства.

Две фигуры F, F'ÌSназываются конгруэнтными или равными, если существует такое движение сферы S, которое переводит одну из этих фигур в другую. Следовательно, фигуры F, F' ÌSконгруэнтны, если они Н0 – эквивалентны.

4. Возьмем на сфере S три точки А,В,С, не лежащие на одной большой окружности. Они определяют три полусферы, каждая из которых содержит точки А,В,С, причем две из этих точек принадлежат краю полусферы. Пересечение этих трех полусфер называется сферическим треугольником с вершинами А,В,С. Дуги АВ, ВС, АС больших окружностей (меньшие полуокружности) называются сторонами сферического треугольника ABC.

Пусть ABC— сферический треугольник, а = d(B,C), b = d(A,C), с = d(A,B) — длины его сторон, a, b, g соответственно углы ВОС, АОС и АОВ.

Докажем теорему синусов для сферического треугольника.

Теорема. Пусть а=d{B,C), b=d{A,C), с=d{A,B) — стороны сферического треугольника ABC, ar— радиус сферы. Тогда

(4)

доказательство

Можно доказать, что справедливо следующее равенство, которое выражает теорему косинусов для сферического треугольника ABC:

(7).

Можно так же доказать, что площадь сферического треугольника ABCвычисляется по формуле

, (8)

где

— так называемый избыток сферического треугольника. Так как площадь SABC>0, то из формулы (8) следует,что e> 0, т. е.
. Итак, сумма углов любого сферического треугольника больше p. Это — существенное отличие геометрии на сфере как от геометрии на плоскости Евклида, так и от геометрии на плоскости Лобачевского

Модель Пуанкаре

Модель Пуанкаре геометрии Лобачевского. (Французский ученый Анри Пуанкаре (1854—1912) — крупнейший математик. Описываемая далее модель была предложена им в 1882г.) Роль плоскости Лобачевского играет открытая полуплоскость; роль прямых выполняют содержащиеся в ней полуокружности с центрами на ограничивающей ее прямой и лучи, перпендикулярные этой прямой. Роль наложений выполняют композиции инверсий относительно этих полуокружностей и отражений в лучах. Все аксиомы евклидовой геометрии здесь выполняются, кроме аксиомы параллельных (рис. 4-1, а), тем самым в этой модели выполняется геометрия Лобачевского.

Опишем эту модель более подробно и докажем сказанное. Берем на обычной евклидовой плоскости какую-нибудь прямую р и ограниченную ею открытую полуплоскость Р. Прямую р назовем граничной прямой. Полуплоскость Р будет играть роль плоскости Лобачевского; мы будем называть ее «плоскостью» в кавычках. Точками в модели будут точки этой «плоскости», т. е. полуплоскости Р. За «прямые» в модели принимаем, во-первых, содержащиеся в Р полуокружности, центры которых лежат на граничной прямой (рис. 4-1, а). «Отрезок» АВ в модели — это дуга такой полуокружности с концами A, В.

Подчеркнем, что конец «отрезка» не может быть концом полуокружности, представляющей прямую; ее концы исключены вместе с граничной прямой; «плоскость» — это открытая полуплоскость. Точка «прямой» служит общим началом двух «лучей» — двух дуг полуокружности (с исключенными концами). «Углом» назовем фигуру из двух «лучей» с общим началом, не содержащихся в одной «прямой» (рис. 4-1, а).

Помимо указанных «прямых» есть еще «прямые» — это полупрямые, перпендикулярные граничной прямой. Они являются пределами рассмотренных полуокружностей (рис. 4-1,б). Когда центр полуокружности удаляется по граничной прямой, а полуокружность проходит через данную точку, то она «распрямляется» и в пределе переходит в полупрямую. Поэтому мы дальше будем мыслить указанные полупрямые среди «прямых» модели в качестве полуокружностей, как «полуокружности бесконечного радиуса». Это позволит обойтись без скучных оговорок, касающихся этих полупрямых, причем, однако, следует помнить условность этого и быть готовым проверять утверждения для таких «полуокружностей». («Отрезок» на такой «прямой» — это обычный отрезок, а «лучи» — один обычный луч, другой — отрезок с исключенным концом на граничной прямой.)

Рассмотрим теперь в этой модели те аксиомы, в которые не входит понятие о равенстве отрезков и углов.

Аксиома параллельных для прямых относится к таким аксиомам. В данной модели она явно не выполняется: через точку А, не лежащую на «прямой» а, проходит бесконечно много «прямых», не имеющих с а общих точек (рис. 4-1,а).