Эквидистанта. Эквидистантой называется фигура, которая состоит из всех точек полуплоскости с границей и, равноудаленных от этой прямой. Прямая и называется базой эквидистанты, а перпендикуляр, проведенный из любой точки эквидистанты на базу,— высотой. Высотой называется также длина hэтого перпендикуляра.
С эквидистантой связан пучок расходящихся прямых — множество всех прямых, перпендикулярных к базе эквидистанты. Прямые этого пучка называются осями эквидистанты. Многие свойства эквидистанты аналогичны свойствам окружности.
Убедимся в том, что эквидистанта — кривая линия.
Теорема 1. Любая прямая, лежащая в плоскости эквидистанты, пересекается с эквидистантой не более, чем в двух точках.
доказательство
Рассмотрим другие свойства эквидистанты.
1. Эквидистанта симметрична относительно любой своей оси.
доказательство
2. В каждой точке эквидистанты существует касательная, которая перпендикулярна к оси, проведенной через точку касания.
доказательство
Учитывая это свойство, мы можем говорить, что эквидистанта является ортогональной траекторией пучка расходящихся прямых, перпендикулярных к базе эквидистанты (см. рис. 2-22, б).
Хордой эквидистанты назовем любой отрезок, соединяющий две точки эквидистанты.
3°. Любая прямая, содержащая хорду эквидистанты, является секущей равного наклона к осям, проходящим через концы хорды.
доказательство
4°. Серединный перпендикуляр к любой хорде эквидистанты является ее осью.
Орицикл. Прежде чем ввести понятие орицикла, докажем следующую лемму.
Лемма. Через каждую точку одной из двух параллельных прямых проходит одна и только одна секущая равного наклона к этим прямым.
доказательство
Пусть на плоскости задан пучок параллельных прямых. На множестве Ω всех точек плоскости введем бинарное отношение ∆ следующим образом. Будем говорить, что точки A и В находятся в отношении ∆, если они совпадают или прямая АВ является секущей равного наклона к прямым данного пучка, проходящим соответственно через точки А и В. Из этого определения непосредственно следует, что отношение ∆ удовлетворяет условиям рефлексивности и симметричности. Можно также доказать, что оно удовлетворяет условию транзитивности. Каждый элемент фактор-множества Ω/∆ называется орициклом (или предельной линией). Прямые данного пучка называются осями орицикла. Если задан пучок параллельных прямых, то через каждую точку А плоскости проходит один и только один орицикл, который представляет собой класс эквивалентности КА по отношению ∆. Это множество состоит из точки А и всех таких точек Xплоскости, что АХ -секущая равного наклона к прямым данного пучка, проходящим через точки А и X.
Если даны направленная прямая UVи на ней некоторая точка А, то тем самым однозначно определяется орицикл, проходящий через точку А с осью UV.
Свойства орицикла аналогичны свойствам окружности и эквидистанты.
Теорема 2. Любая прямая, лежащая в плоскости орицикла, пересекается с орициклом не более чем в двух точках.
доказательство
Орицикл симметричен относительно любой своей оси и является ортогональной траекторией пучка его параллельных осей (см. рис 2-22, в).
Любые два орицикла на плоскости Лобачевского равны.
Гиперболическое пространство
Пусть V— векторное пространство размерности п над полем R (в дальнейшем будем рассматривать значения п = 2,3). Зададим билинейную форму g: V V → R, такую, чтобы квадратичная форма φ ( ) = g( , ) была бы невырожденной квадратичной формой индекса k > 0. Число g( , ) R назовем скалярным произведением векторов , и обозначим через · или , а число длиной (нормой) вектора . Таким образом, если , то , а если , то , где b > 0 и i2= -1.
Векторное пространство V, в котором скалярное произведение определено при помощи указанной выше билинейной формы g, называется псевдоевклидовым векторным пространством индекса k.
В псевдоевклидовом пространстве скалярный квадрат вектора ≠ 0 может быть положительным, отрицательным или нулем. Например, если в базисе В = ( ) квадратичная форма φ ( ) имеет нормальный вид:
φ( ) = (x1)2+ …+ (xn-k)2 – (xn-k+1)2 – … – (xn)2 , (1)
то, очевидно, для векторов базиса имеем:
, ,…, , , …, .
Поэтому длина каждого из векторов равна единице; это единичные векторы. Каждый из векторов имеет мнимую длину i; назовем эти векторы мнимоединичными.
Вектор ≠ , для которого = 0, называется изотропным. Длины этих векторов равны нулю. Каждый из векторов , где и — векторы базиса В при р п — k, q > n — k, является изотропным, так как по формуле (1)
φ( ) = 1 – 1=0.
По-прежнему два вектора , будем называть ортогональными, если = 0. Векторы базиса В, в котором квадратичная форма имеет нормальный вид (1), попарно ортогональны, так как эти векторы попарно сопряжены относительно билинейной формы g( , ).
Таким образом, базис В состоит из единичных и мнимоединичных попарно ортогональных векторов. Такой базис назовем ортонормированным. Так как индекс квадратичной формы φ ( ) не зависит от способа приведения этой формы к нормальному виду, то все ортонормированные базисы псевдоевклидова векторного пространства Vсодержат одинаковое число мнимоединичных векторов; это число равно индексу пространства.
Пусть В — ортонормированный базис, а векторы и в этом базисе имеют координаты (xi) и (уi). Тогда = хi и у = yi , поэтому