Задача 1
Провести полное исследование функций и построить их графики
Решение:
1) Область определения
,функция общего вида, т.к.y(-x)≠-y(x), y(-x)≠y(x);
2)
=>x=-4точка разрыва 2-го рода
3) Нули функции
4) Интервалы монотонности
возможные точки экстремума не существует при-12 | 4 | 0 | |||||
0 | - | 0 | |||||
-27 | - | 0 |
Функция возрастает при
.Функция убывает при
. – точка максимума.5. Выпуклость и вогнутость кривой.
при не существует припри
кривая выпуклапри
кривая вогнута тч. перегиба6) Асимптоты.
а) вертикальные: х=-4.
б) наклонные:
, =>– наклонная асимптота
7) График функции
Задача 2
Фирма планирует собирать S шт./год телевизоров. Она периодически закупает кинескопы одинаковыми партиями размером q , шт./партию. Издержки по поставке не зависят от размера партии и равны СП, руб./поставку. Хранение одного кинескопа на складе в течение года обходится в СХ. руб./шт. год. Сборка телевизоров производится равномерно, с постоянной интенсивностью. Требуется определить оптимальные параметры системы снабжения кинескопами, при которых суммарные годовые издержки пополнения и хранения запаса кинескопов минимальны.
Таблица 1 - Параметры системы снабжения фирмы кинескопами
№ | S | СП | СХ |
12 | 62000 | 1650 | 68 |
Указания к задаче 2:
1) Запишите формулы для годовых издержек пополнения запасов ИП(q), издержек хранения ИХ(q) и суммарных издержек И(q) → min;
2) Сформулируйте критерий нахождения экстремума суммарных издержек;
3) Рассчитайте оптимальные значения параметров системы (партия поставок q, число поставок в год Nо, период между поставками То, издержки пополнения ИПо, издержки хранения ИХо , суммарные издержки Ио);
4) Постройте график изменения текущего запаса кинескопов в течение года;
5) Исследуйте характер изменения трех видов издержек как функций размера партииq и постройте графики этих функций на новом рисунке.
Решение:
Годовые издержки пополнения запасов ИП можно определить как произведение числа поставок N на стоимость одной поставки СП.
ИП = N * СП
Число поставок можно выразить через общий объем поставок S и размер партии q:
N =
Тогда можно записать функцию годовых издержек пополнения запасов в зависимости от размера партии:
ИП(q) = СП *
Функцию годовых издержек хранения ИХ можно определить как произведение стоимости хранения единицы СХ на среднее число кинескопов на складе.
Среднее число единиц хранения при равномерном расходе определяется как полусумма максимального и минимального числа кинескопов. Примем за минимальный уровень нулевое значение (без страхового запаса). Тогда максимальный уровень будет равен размеру партии, т.к. сразу после поставки на складе будет лежать q кинескопов.
Исходя из вышесказанного, можно записать функцию годовых издержек хранения:
ИХ(q) = CX *
= CX *Запишем функцию суммарных издержек:
И(q) = ИП(q) + ИХ(q) = СП *
+ CX *Экстремум функции суммарных издержек от размера партии определим из условия равенства нулю первой производной. Это экстремум соответствует минимуму суммарных издержек и определяет оптимальный размер партии.
И’(q) = (СП *
+ CX * )’= – +Составим и решим уравнение:
–
+ = 0 ; = ; q2 = ; q = .Отрицательное значение корня не имеет физического смысла.
В результате получили формулу для определения оптимального размера партии.
Рассчитаем оптимальные значения параметров системы.
Найдем оптимальный размер партии:
q =
= » 1735 шт.Найдем число поставок в год:
Nо = S / q = 62000 / 1735 = 35,7 » 36 раз
Найдем период между поставками:
То = 360 / 36 = 10 дней
Найдем издержки пополнения:
ИПо = СП * N = 1650 * 36 = 59400 руб.
Найдем издержки хранения:
ИХо = CX *
= 68 * 1735 / 2 = 58990 руб.Найдем суммарные издержки
Ио = ИПо + ИХо = 59400 + 58990 = 118390 руб.
Построим график запасов:
Рис. 1
Рассмотрим функции издержек.
Годовые издержки пополнения запасов ИП(q) = СП *
являются обратной гиперболической функцией, которая монотонно убывает с увеличением размера партии q. С возрастанием q скорость убывания падает.Годовые издержки хранения ИХ(q) = CX *
являются линейной функцией, которая монотонно возрастает с увеличением размера партии q. Минимальное значение функции нулевое. С возрастанием q скорость увеличения издержек хранения не изменяется.