Суммарные издержки являются суммой двух предыдущих функций. В силу этого, функция сначала убывает – когда издержки пополнения запасов существенно выше издержек хранения, а после выравнивания размеров издержек начинает возрастать – когда издержки хранения превышают размер издержек пополнения. Функция суммарных издержек имеет один минимум в районе примерного равенства входящих в нее функций.
Построим графики изменения трех видов издержек как функций размера партииq:
Рис..2
Задача 3
Фирма собрала сведения об объемах продаж своей продукции (Yi) за 6 последних месяцев (Xi =1...6) и представила их в виде таблицы. Перед отделом маркетинга поставлена задача аппроксимировать эмпирические данные подходящей функцией, чтобы использовать ее для целей краткосрочного прогнозирования (на один и два месяца вперед, Xj=7, 8).
Таблица 1 - Данные о помесячных объемах продаж фирмы
№ | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 |
12 | 14 | 13 | 11 | 14 | 13 | 16 |
Указания к задаче 3:
1) выполните аппроксимацию эмпирических данных линейной функцией у = a0x + a1;
2) выведите нормальные уравнения метода наименьших квадратов для линейной функции;
3) выведите формулы Крамера для параметризации аппроксимирующей линейной функции;
4) для расчета параметров аппроксимирующей линейной функции составьте таблицу.
Таблица.2 - Параметризация аппроксимирующей линейной функции.
i | Xi | Yi | Xi2 | XiYi |
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
Сумма |
5) запишите выражение для аппроксимирующей линейной функции и рассчитайте ее значения о точках Xi = 1...8; результаты расчетов оформите в виде таблицы;
6) изобразите на одном рисунке в большом масштабе график аппроксимирующей линейной функции и нанесите эмпирические точки.
Решение:
Аппроксимацию эмпирических данных будем выполнять линейной функцией
у = a0x + a1
Сущность метода наименьших квадратов состоит в подборе таких a1 и a0 , чтобы сумма квадратов отклонений была минимальной. Так как каждое отклонение зависит от отыскиваемых параметров, то и сумма квадратов отклонений будет функцией F этих параметров: F(a0 , a1) =
или F(a0 , a1) =Для отыскания минимума приравняем нулю частные производные по каждому параметру:
= =Выполнив элементарные преобразования сумм, получим систему из двух линейных уравнений относительно a1 и a0:
Решим данную систему методом Крамера:
Тогда можно вывести формулы расчета параметров:
Построим расчетную таблицу
Таблица 3 – Расчетная таблица
i | Xi | Yi | Xi2 | XiYi |
1 | 1 | 14 | 1 | 14 |
2 | 2 | 13 | 4 | 26 |
3 | 3 | 11 | 9 | 33 |
4 | 4 | 14 | 16 | 56 |
5 | 5 | 13 | 25 | 65 |
6 | 6 | 16 | 36 | 96 |
Сумма | 21 | 81 | 91 | 290 |
Найдем значения параметров:
Тогда формула аппроксимирующей линейной функции будет равна
= 0,3714·Xi + 12,2Найдем значения аппроксимирующей функции:
Таблица 4 – Расчет значений аппроксимирующей функции
i | Xi | |
1 | 1 | 12,5714 |
2 | 2 | 12,9428 |
3 | 3 | 13,3142 |
4 | 4 | 13,6856 |
5 | 5 | 14,057 |
6 | 6 | 14,4284 |
7 | 7 | 14,7998 |
8 | 8 | 15,1712 |
Построим график аппроксимирующей функции
Рис.1
Задача 4
Найти приращение и дифференциал функции y=a0x3+a1x2+a2x (таблица). Рассчитать абсолютное и относительное отклонения dy от Δy.
Решение:
y=4x3–2x2–3x
Приращение функции
y(x+Δx)–y(x)= 4(x+Δx)3–2(x+Δx)2–3(x+Δx) – (4x3–2x2–3x)=
=4(x3+3x2Δx + 3xΔx2 + Δx3)–2(x2+2 xΔx +Δx2)–3x–3Δx –4x3+2x2+3x=
=4x3+12x2Δx + 12xΔx2 + 4Δx3 –2x2–4 xΔx –2Δx2–3Δx –4x3+2x2=
=12x2Δx + 12xΔx2 + 4Δx3–4 xΔx –2Δx2–3Δx =
=(12x2–4 x–3)Δx+((12x–2)Δx2 + 4Δx3)
Линейная по Δx часть приращения есть дифференциал, то есть
dy=(12x2–4 x–3)Δxили заменяя Δx на dx получим dy=(12x2–4 x–3)dx
Абсолютное отклонение:
Δy– dy = (12x2–4 x–3)Δx+((12x–2)Δx2 + 4Δx3)– (12x2–4 x–3)Δx=(12x–2)Δx2 + 4Δx3
Относительное отклонение:
Задача 5
Используя дифференциал, рассчитайте приближенное значение функции
, оцените относительную погрешность и вычислите значение с 6 знаками.n=3, x=63
Решение:
Возьмем
=64 =>Тогда
Относительная погрешность
Задача 6. Найти неопределенные интегралы, используя метод разложения.
Решение:
1)
2)
Задача 7
Найти неопределенные интегралы, используя метод замены переменной.
Решение:
1)
2)Задача 8
Найти неопределенные интегралы, используя метод интегрирования по частям.
Решение:
1)
2)
Задача 9. Нарисуйте прямоугольный треугольник с вершинами в точках О(0,0), А(а,0), В(0,b). Используя определенный интеграл выведите формулу площади прямоугольного треугольника.
Решение:
Уравнение гипотенузы найдем как уравнение прямой по 2-м точкам:
Тогда площадь треугольника равна:
Задача 10. Нарисуйте треугольник произвольной формы, расположив его вершины в точках А1(а1,0), А2(а2,0), В(0,b). Используя определенный интеграл, выведите формулу площади треугольника произвольной формы.
Решение:
Уравнение сторон найдем как уравнения прямых по 2-м точкам:
А1В:
=>А2В:
=>Тогда площадь треугольника равна:
Задача 11. Начертите четверть круга радиуса R с центром в точке О(0,0). Используя определенный интеграл, выведите формулу площади круга. (Уравнение окружности x2+y2=R2)