Смекни!
smekni.com

Высшая математика (стр. 2 из 3)

Суммарные издержки являются суммой двух предыдущих функций. В силу этого, функция сначала убывает – когда издержки пополнения запасов существенно выше издержек хранения, а после выравнивания размеров издержек начинает возрастать – когда издержки хранения превышают размер издержек пополнения. Функция суммарных издержек имеет один минимум в районе примерного равенства входящих в нее функций.

Построим графики изменения трех видов издержек как функций размера партииq:

Рис..2

Задача 3

Фирма собрала сведения об объемах продаж своей продукции (Yi) за 6 последних месяцев (Xi =1...6) и представила их в виде таблицы. Перед отделом маркетинга поставлена задача аппроксимировать эмпирические данные подходящей функцией, чтобы использовать ее для целей краткосрочного прогнозирования (на один и два месяца вперед, Xj=7, 8).

Таблица 1 - Данные о помесячных объемах продаж фирмы

Y1 Y2 Y3 Y4 Y5 Y6
12 14 13 11 14 13 16

Указания к задаче 3:

1) выполните аппроксимацию эмпирических данных линейной функцией у = a0x + a1;

2) выведите нормальные уравнения метода наименьших квадратов для линейной функции;

3) выведите формулы Крамера для параметризации аппроксимирующей линейной функции;

4) для расчета параметров аппроксимирующей линейной функции составьте таблицу.

Таблица.2 - Параметризация аппроксимирующей линейной функции.

i Xi Yi Xi2 XiYi
1
2
3
4
5
6
Сумма

5) запишите выражение для аппроксимирующей линейной функции и рассчитайте ее значения о точках Xi = 1...8; результаты расчетов оформите в виде таблицы;

6) изобразите на одном рисунке в большом масштабе график аппроксимирующей линейной функции и нанесите эмпирические точки.

Решение:

Аппроксимацию эмпирических данных будем выполнять линейной функцией

у = a0x + a1

Сущность метода наименьших квадратов состоит в подборе таких a1 и a0 , чтобы сумма квадратов отклонений была минимальной. Так как каждое отклонение зависит от отыскиваемых параметров, то и сумма квадратов отклонений будет функцией F этих параметров: F(a0 , a1) =

или F(a0 , a1) =

Для отыскания минимума приравняем нулю частные производные по каждому параметру:

=

=

Выполнив элементарные преобразования сумм, получим систему из двух линейных уравнений относительно a1 и a0:

Решим данную систему методом Крамера:

Тогда можно вывести формулы расчета параметров:


Построим расчетную таблицу

Таблица 3 – Расчетная таблица

i Xi Yi Xi2 XiYi
1 1 14 1 14
2 2 13 4 26
3 3 11 9 33
4 4 14 16 56
5 5 13 25 65
6 6 16 36 96
Сумма 21 81 91 290

Найдем значения параметров:

Тогда формула аппроксимирующей линейной функции будет равна

= 0,3714·Xi + 12,2

Найдем значения аппроксимирующей функции:

Таблица 4 – Расчет значений аппроксимирующей функции

i Xi
1 1 12,5714
2 2 12,9428
3 3 13,3142
4 4 13,6856
5 5 14,057
6 6 14,4284
7 7 14,7998
8 8 15,1712

Построим график аппроксимирующей функции

Рис.1

Задача 4

Найти приращение и дифференциал функции y=a0x3+a1x2+a2x (таблица). Рассчитать абсолютное и относительное отклонения dy от Δy.

Решение:

y=4x3–2x2–3x

Приращение функции

y(x+Δx)–y(x)= 4(x+Δx)3–2(x+Δx)2–3(x+Δx) – (4x3–2x2–3x)=

=4(x3+3x2Δx + 3xΔx2 + Δx3)–2(x2+2 xΔx +Δx2)–3x–3Δx –4x3+2x2+3x=

=4x3+12x2Δx + 12xΔx2 + 4Δx3 –2x2–4 xΔx –2Δx2–3Δx –4x3+2x2=

=12x2Δx + 12xΔx2 + 4Δx3–4 xΔx –2Δx2–3Δx =

=(12x2–4 x–3)Δx+((12x–2)Δx2 + 4Δx3)

Линейная по Δx часть приращения есть дифференциал, то есть

dy=(12x2–4 x–3)Δxили заменяя Δx на dx получим dy=(12x2–4 x–3)dx

Абсолютное отклонение:

Δy– dy = (12x2–4 x–3)Δx+((12x–2)Δx2 + 4Δx3)– (12x2–4 x–3)Δx=(12x–2)Δx2 + 4Δx3

Относительное отклонение:

Задача 5

Используя дифференциал, рассчитайте приближенное значение функции

, оцените относительную погрешность и вычислите значение с 6 знаками.

n=3, x=63

Решение:

Возьмем

=64

=>

Тогда

Относительная погрешность

Задача 6. Найти неопределенные интегралы, используя метод разложения.

Решение:

1)

2)

Задача 7

Найти неопределенные интегралы, используя метод замены переменной.

Решение:

1)

2)

Задача 8

Найти неопределенные интегралы, используя метод интегрирования по частям.

Решение:

1)

2)

Задача 9. Нарисуйте прямоугольный треугольник с вершинами в точках О(0,0), А(а,0), В(0,b). Используя определенный интеграл выведите формулу площади прямоугольного треугольника.

Решение:

Уравнение гипотенузы найдем как уравнение прямой по 2-м точкам:


=>

Тогда площадь треугольника равна:

Задача 10. Нарисуйте треугольник произвольной формы, расположив его вершины в точках А11,0), А22,0), В(0,b). Используя определенный интеграл, выведите формулу площади треугольника произвольной формы.

Решение:

Уравнение сторон найдем как уравнения прямых по 2-м точкам:


А1В:

=>

А2В:

=>

Тогда площадь треугольника равна:

Задача 11. Начертите четверть круга радиуса R с центром в точке О(0,0). Используя определенный интеграл, выведите формулу площади круга. (Уравнение окружности x2+y2=R2)