Смекни!
smekni.com

Вариации при исчислении (стр. 2 из 7)

В этом случае интеграл (1.16) можно взять по частям

Таким образом, интеграл (1.15) можно записать в виде

.(1.18)

Здесь u + αη – u = αη = δu u можно записать

(1.19)

Вариацию δJ (u, η) можно записать в виде

δJ (u, η) = (Рu, η). (1.20)

Определение. Оператор Р, определенный формулой (1.20), называется градиентом функционала J(u) и обозначается символом

Р = gradJ.

Если u

D(Р), то вариацию функционала J(u) можно записать в виде

δJ (u, η) = (grad J(u), η) (1.21)

Здесь взяли α = 1, чтобы не загромождать запись. В выражении (1.18)

.

1.5 Необходимое условие минимума функционала

Пусть функционал J достигает на некотором элементе u0 относительного минимума. Возьмем произвольный элемент η

М и произвольное вещественное число α. По определению относительного минимума при достаточно малых значениях α

J(u0 + αη)

J(u0) (1.22)

Это неравенство означает, что функция одной вещественной переменной α, равная J(u0 + αη), имеет при α0 = 0 относительный минимум. Но тогда необходимо

или, что то же


δJ(u0, η) = 0 (1.23)

Если функционал в некоторой точке достигает минимума, то в этой точке первая вариация функционала равна нулю. В этом заключается необходимое условие экстремума функционала.

1.6 Уравнение Эйлера. Связь между вариационной и краевой задачами

Рассмотрим основную лемму вариационного исчисления.

Лемма Лагранжа.

Пусть f (х, у) – функция, непрерывная в области D с контуром Г. Если

η (х, у) dxdy = 0 (1.24)

для любой функции η (х, у), непрерывной в области D вместе со своими частнымы производными до n-го порядка включительно и обращающейся в нуль на границе Г (η (х, у)|Г = 0), то

f (х, у) = 0.

Для примера, рассмотренного в 1.4, было получено в точке минимума функционала (1.13) условие

(1.25)

Исходя из леммы Лагранжа, можем записать

.(1.26)

Если условие (1.25) записать в виде

,

то очевидно, что δu (вариация искомой функции) – функция неравная нулю на отрезке (а, b), поэтому должно выполняться условие (1.26).

Уравнение (1.26) можно еще записать в виде

Уравнение (1.26) называют уравнением Эйлера. Если предположить существование непрерывной второй производной от u(х), то уравнение (1.26) можно записать в виде

.

Таким образом, условие минимума функционала (1.13) при условии (1.14) приводит к краевой задаче для уравнения Эйлера (1.26) при тех же условиях (1.14), т.е. Существует тесная связь между вариационной задачей о минимуме функционала и краевой задачей для уравнения Эйлера для этого функционала.

Решения уравнения Эйлера (1.26), удовлетворяющие условиям (1.14) называют экстремалями функционала (1.13).

1.7 Пути решения вариационных задач

Один из путей решения вариационной задачи, т.е. задачи нахождения минимума некоторого функционала J(u) при заданных краевых условиях, состоит в сведении этой задачи к краевой задаче для дифференциального уравнения при тех же краевых условиях, которое является уравнением Эйлера для этого функционала, с последующим решением этой задачи.

Второй путь решения вариационной задачи состоит в применении вариационных методов, которые позволяют приближенно найти функцию u0, дающую минимум функционалу J(u), и удовлетворяющую заданным краевым условиям.

Рассмотрим несколько примеров решения задач вариационного исчисления, основанных на нахождении уравнений Эйлера с последующим их решением.

Пример 1.

Найти функцию у = u(х), удовлетворяющую условию

u(0) = u(1) = 0 (1.27)

и дающую минимум функционалу

(1.28)

Будем считать, что функция u(х) непрерывна и имеет непрерывные производные до второго порядка включительно.

Уравнение Эйлера для функционала (28) будет иметь вид

(1.29)

Таким образом, получили краевую задачу для линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Общее решение уравнения (1.29) будет иметь вид


.

Для нахождения произвольных постоянных с1 и с2 воспользуемся краевыми условиями (1.27). В результате получим

Откуда

Следовательно, функция, дающая минимум функционалу (1.28) при условии (1.27), будет иметь вид

.(1.30)

Пример 2.

В качестве второго примера рассмотрим задачу о брахистохроне.

Как было показано ранее (см. 1.2.1), задача состоит в том, чтобы найти функцию у = u(х), удовлетворяющую условиям:

u(0) = 0, u(а) = b

и сообщающую минимум функционалу

.

В этом случае

.(1.31)

Функция (31) при u = 0 терпит разрыв. Путем несложных рассуждений показывается, что все-таки можно воспользоваться уравнением Эйлера в виде (1.26).

Уравнение (1.26) приводится к виду

(1.32)

Отсюда

.

Положим

. Тогда
.

Дифференцируя это выражение, получим

. Замена
дает дифференциальное уравнение относительно

Далее


.

Положив

, получим

.

Таким образом, если решение задачи о брахистохроне имеет решение, то это решение есть циклоида.

1.8 Вторая вариация функционала. Достаточное условие минимума функционала

Рассмотрим функцию

от вещественной переменной
, считая
и
фиксированными.

Эту функцию разложим в ряд Тейлора:

(1.34)

где R1 – остаточный член ряда.

Выражение

называется второй вариацией функционала J на элементе u.

Разложение (1.34) можно записать в виде

. (1.36)

Пусть функционал J достигает минимума, относительного или абсолютного на элементе u0. Тогда

, и формула (1.36) дает

.(1.37)

Из этого соотношения вытекает достаточное условие того, что элемент u0, удовлетворяющий уравнению Эйлера (экстремаль), сообщает функционалу минимальное значение. Для абсолютного минимума это условие имеет вид (учитывая, что

(1.38)

для относительного минимума оно состоит в том, что неравенство (1.38) выполняется, когда элемент

достаточно мал по норме.

Условие (1.38) в конкретных задачах трудно проверить, потому что величина

обычно неизвестна, и непосредственно им, как правило, воспользоваться не удается.

Поэтому для проверки достаточного условия экстремума функционала пользуются более простыми условиями.