3. Якщо
4. Обчислити
5. Подати на пристрій виведення інформацію: "Рівняння має два дійсні корені:" і роздрукувати значення шуканих коренів
6. Перейти до п. 8.
7. Вивести на пристрій виведення інформацію:
«Коефіцієнт загасання дорівнює « і вивести значення
«Частота власних коливань дорівнює» і роздрукувати значення
8. Кінець обчислень.
При виконанні алгоритму перехід від однієї дії до іншої здійснюється строго у порядку їхнього запису. Якщо ж потрібно перервати природний хід дій за деякої умови, слід указувати на це (див. п. 3 наведеного алгоритму).
Структурною схемою алгоритму називають графічне зображення послідовності дій обчислювального процесу.
У схемі кожна дія розміщується у певному геометричному символі (фігурі). Послідовність дій указується на схемі напрямком стрілок на лініях, якими з'єднують ці символи. Зазвичай прийнято початок і кінець обчислень зображувати овалами, введення даних і виведення результатів - у вигляді паралелограма. Обчислювальні операції розміщуються у прямокутниках, а операція перевірки деякої умови зображується у вигляді ромбу. Усередині кожної фігури розміщується стислий формульний опис відповідної операції.
Символи операцій перевірки умови мають два виходи: "так" і "ні". Стрілка на лінії, що виходить із виходу "так" вказує на операцію, до виконання якої потрібно перейти, якщо умову, яка перевіряється, виконано. Стрілка з написом "ні" вказує на операцію, до виконання якої слід перейти у випадку, коли умову не виконано.
На рис. 1.2. подані зображуючи елементи блок-схеми алгоритму обчислень. Фігури з'єднуються лініями зі стрілками, які вказують на операцію, до виконання якої слід перейти.
Для прикладу на рис 1.3 зображено схему алгоритму відшукування коренів квадратного рівняння.
-
|
|
|
|
|
так
|
ні
Рис. 1.2 Елементи блок-схеми алгоритму
| ||
|
|
Рис. 1.3. Схема алгоритму відшукання коренів квадратного рівняння
Обчислення по алгоритмах відбувається за допомогою різних обчислювальних засобів.
При ручних (безпосередніх) розрахунках зазвичай використовуються найпростіші обчислювальні засоби: логарифмічна лінійка, таблиці, механічні, електричні, електронні клавішні обчислювальні машини. Проміжні результати дій алгоритму треба записувати у спеціальний розрахунковий бланк. Наявність програмувальних мікрокалькуляторів дозволяє реалізовувати обчислення автоматично, під керуванням програми.
Суттєвим є контроль обчислень, який проводять за так званим контрольним прикладом (тестом). Результат контрольного прикладу має бути заздалегідь відомим, тобто він або є очевидним, або його відшукують яким-небудь іншим способом. При ручному рахунку контроль рекомендується проводити поетапно. При розрахунках на ЕОМ за складеною програмою контрольний приклад заздалегідь прораховують вручну, а потім звіряють поетапно результати розрахунків із здійснюваними машиною.
Алгоритм методу легко зрозуміти з мал.1
f(b)
|
f(a) a+b b x
Мал.1 Схема методу дихотомії
Заданий інтервал
За остаточне значення кореня при цьому слід узяти значення (4).
Якщо обчислення потрібно проводити з максимальною точністю, процес звуження інтервалу слід продовжувати доти, поки нижня й верхня межі інтервалу
Схема алгоритму метода дихотомії для останнього випадку наведена на Мал.2.
|
|
|
|
Мал 2. Схема алгоритму метода дихотомії
До переваг метода дихотомії слід віднести те, що він може бути застосований навіть до тих неперервних функцій, що є недиференційованими у деяких точках усередині заданого інтервалу визначення кореня.
Список літератури
1. Бахвалов Н.С. и др. Численные методы. -М. : Наука, 1987.
2. Боглаев Ю.П. Вычислительная математика и программирование. -М.: Высшая школа, 1990.
3. Демидович Б.П. , Марон И.А. Основы вычислительной математики. -М. : Наука, 1970.
4. Войцехівський, І.П. Гаврилюк та ін. – К.: Вища шк., 1995, 303 с.
5. Воробьева Г.Н. , Данилова А.Н. Практикум по вычислительной математике. -М. : Высшая школа, 1990, 208.
6. Гаврилюк І.П., Макаров В.Л. Методи обчислень: Підручник: У 2ч. – К.: Вища шк., 1995. – Ч.1., 367 с.
7. Гаврилюк І.П., Макаров В.Л. Методи обчислень: Підручник: У 2ч. – К.: Вища шк., 1995. – Ч.2., 431 с.
8. Мак-Кракен Д., Дорн У. Численные методы и программирование на Фортране. - М.: Мир, 1977.