Оглавление
Введение
§1.Система аксиом алгебры октав, ее непротиворечивость и категоричность
1.1 Непротиворечивость системы аксиом алгебры октав
1.2 Категоричность системы аксиом алгебры октав
§2. Дополнительные сведения об октавах
2.1 Действия над октавами
2.2 Сопряженные октавы и их свойства
2.3.Некоторые тождества для октав
§3. Теорема Гурвица
3.1 Нормированные линейные алгебры
3.2 Теорема Гурвица
§4. Обобщенная теорема Фробениуса
Список литературы
Введение
Одному известному английскому философу-материалисту Д. Гартли принадлежало высказывание- "Поскольку слова могут быть сравнены с буквами, употребляемыми в алгебре, сам язык можно назвать одним из видов алгебры, и наоборот, алгебра есть не что иное, как язык, который особым образом приспособлен к объяснению величин всех родов… И вот, если все относящееся к языку имеет что-либо аналогичное в алгебре, то можно надеяться объяснить трудности, возникающие в теории языка, при посредстве соответствующих конкретных положений алгебры, в которой все ясно и признано всеми, кто сделал ее предметом своего изучения".
Предметом моего изучения является один из разделов не ассоциативной алгебры - алгебра октав.
Цель данной исследовательской работы- выявить сущность алгебры октав, а так же выявить, каким образом производятся действия над упорядоченной восьмеркой чисел, т.е. над (1, i, j, k, E, I, J, K).Не ассоциативные алгебры в настоящее время покрыты мифами экзотики. На самом деле ничего особенного, кроме потери ассоциативности, в них нет. Впрочем, эта потеря существенна. Если можно выразиться образно, то в космосе алгебр за ассоциативными уже ничего "живого" нет. Среди не ассоциативных алгебр наиболее известной является простейшая из них - алгебра октав. Или, иначе, четвертая алгебра Фробениуса, она же алгебра Кэли-Диксона.
Рассмотрим алгебраическое определение октавы.
Октавой - называется число гиперкомплексной алгебры, полученной некоммутативным удвоением по Кэли алгебры кватернионов:
Здесь обозначены:
O - октава,
Q - кватернионы,
E - мнимая единица.
Октавы во многих случаях уместно рассматривать как существенное расширение кватернионов. Так же как и кватернионы, октавы не имеют делителей нуля, и квадрат модуля так же выражается простой квадратичной формой. Для них, так же как и для кватернионов, можно определить условное скалярное произведение. Которое и использовалось Фробениусом.
Объектом данной дипломной работы являются гиперкомплексные числа.
Для октав, как и для других гиперкомплексных чисел, определены операции сложения, вычитания, умножения и деления. Операции сложения и вычитания определены покомпонентно. Умножение октав определено таблицей произведения их мнимых единиц. Для выполнения деления производится замена операции деления на операцию умножения.
При использовании гиперкомплексных чисел и их исследовании часто встречается операция сопряжения.
Для октав определены две операции сопряжения - алгебраическое и векторное. Два других сопряжения - дуальное и скалярное не применимы в силу отсутствия в строении октав скалярной и дуальной мнимых единиц. При этом векторное и алгебраическое сопряжения совпадают. Октава, сопряженная заданной, образуется сменой знаков у компонент при всех мнимых единицах. Или, если ,обозначить октаву покомпонентно как
то сопряженная ей октава будет иметь вид:
§1. Система аксиом алгебры октав, ее непротиворечивость и категоричность
Определение. Алгеброй октав называется алгебра
I. Алгебра
II. Тело кватернионов
III. е2 = -1 и е ≠ i, е ≠ j, е ≠ k;
IV.Всякая подалгебра альтернативной линейной алгебры
1.1 Непротиворечивость системы аксиом алгебры октав
Теорема 1. Система аксиом алгебры октав непротиворечива. Для доказательства непротиворечивости сформулированной выше системы аксиом построим следующую модель. Составим декартово произведение KxK= {(u,v)|u
Во множестве К х K определим операции сложения и умножения по правилам:
(u1;v1) + (u2;v2) = (u1 +u2 ; v1 + v2);
(u1;v1) * (u2;v2) = (u1u2 - v2v1 ; v2u1 + v1 ū2).
Перейдем к проверке выполнения аксиом на построенной модели. Покажем, что алгебра
Сначала покажем, что (К x К, +) есть абелева группа.
1) ((u1;v1) + (u2;v2)) + (u3;v3) = (u1 +u2 ; v1 + v2) + (u3; v3) = ((u1 +u2) + u3; (v1 + v2) + v3) = (u1 +(u2 + u3); v1 + (v2 + v3)) = ((u1; v1) + (u2+ u3;v2+ v3) = (u1; v1) + ((u2; v2) + (u3; v3)),
т.е. сложение в (К х K, +) ассоциативно.
2) (u1; v1) + (u2; v2) = (u1 +u2 ; v1 + v2) = (u2 +u1; v2 + v1) = (u2; v2) + (u1; v1),
т.е. сложение в (К х K, +) коммутативно.
3) Решим уравнение
(u; v) + (x; y) = (u; v);
(u+ x; v+ y) = (u; v)
Следовательно, нейтральным элементом в (К х K, +) является пара (0; 0). Обозначим (0; 0) = 0U.
4) Решим уравнение
(u; v) + (x; y) = (0; 0):
(u+ x; v+ y) = (0; 0)
Из 1) ,4) следует, что алгебра (К х K, +) есть абелева группа. Покажем, что алгебра (К х K, +, .) есть кольцо, но не ассоциативное и не коммутативное.
5) Покажем, что умножение в
С одной стороны:
((u1; v1) + (u2; v2)) (u3; v3) = (u1 +u2 ; v1 + v2)
(u3; v3) = ((u1 +u2) u3 -
С другой стороны:
(u1; v1) (u3; v3) + (u2; v2)
(u3; v3) = (u1u3 -
Сопоставляя правые части полученных равенств, замечаем, что они равны. Следовательно,
((u1; v1) + (u2; v2)) (u3; v3) = (u1; v1)
(u3; v3) + (u2; v2)
(u3; v3),
т.е. умножение в
Аналогично устанавливается равенство:
(u3; v3) ((u1; v1) + (u2; v2)) = (u3; v3)
(u2; v2) + (u3; v3)
(u1; v1).