Смекни!
smekni.com

Алгебра октав (стр. 5 из 19)

Итак, пара

(x; y) =

; -

является и левым обратным элементом для элемента (u; v) в

. Обозначим его (u, v)-1.

Левый и правый обратные элементы для (u; v) совпадают и, следовательно, каждый ненулевой элемент обратим в

.

Из 1)-11) следует, что алгебра

есть альтернативная линейная алгебра с делением и единицей, т.е. в данной модели первая аксиома полностью выполняется.

Проверим выполнение второй аксиомы на построенной модели.

Пусть U1 = {(u; 0)| u

K}. Ясно, что U1
KxK.

Покажем, что множество U1 замкнуто относительно введенных ранее операций сложения и умножения:

(u1, 0) + (u2, 0) = (u1 + u2: 0 + 0) = (u1 + u2: 0)

U1;

(u1, 0)

(u2, 0) = (u1
u2

0; 0
u1 + 0
ū2) = (u1
u2: 0)
U1.

Далее:

- (u; 0) = (- u; - 0) = ( - u; 0)

U1;

(u; 0)-1 =

=
U1,

откуда следует, что

есть под тело алгебры
,
.

Покажем, что

изоморфно телу кватернионов
. Для этого рассмотрим отображение f : U1 → Kтакое, что (
(u; 0) є U1) f((u; 0)) = u, т.е. паре (и;0) ставит в соответствие кватернион и. Имеем:

f ((u1; 0) + (u2; 0)) = f ((u1 + u2: 0)) = u1 + u2 = f ((u1; 0)) + f ((u2; 0));

f (- (u; 0)) = f (( - u; 0)) = - u = - f ((u; 0));

f ((u1; 0)

(u2; 0)) = f ((u1 u2: 0)) = u1
u2 = f ((u1; 0))
f ((u2; 0));

f ((u; 0)-1) = f ((

; 0)) =
; 0 = u-1 = f ((u; 0)) -1,

откуда следует, что отображение f является гомоморфным отображением алгебры

в тело кватернионов. Это отображение биективно, так как

f ((u1; 0)) = f ((u2; 0))

u1 = u2
1; 0) = (и2; 0) и f (U1) = К.

Следовательно, отображение f есть изоморфизм тела

на тело кватернионов (К, +, .), т.е. тело
изоморфно телу кватернионов. В этом случае мы можем рассматривать тело
как лишь другую модификацию тела кватернионов, а пару (u;0) отождествлять с кватернионом и. А так как
есть подтело алгебры
, то и изоморфное ему тело кватернионов является подтелом алгебры
.

Проверим выполнение третьей аксиомы. Для этого возьмем пару (0; 1). Имеем:

(0; 1)2 = (0; 1)

(0; 1) = (0
0 -

1; 1
0+1
) = (-1; 0) = -(1; 0) = -(1; 0) = - 1.

С другой стороны:

(0; i) ≠ (i; 0) = i; (0: 1) ≠ (j; 0) = j; (0; k) ≠ (k; 0) = k.

Обозначим: (0; 1) = е. Следовательно, на построенной модели выполняется и третья аксиома.

Из проверки второй и третьей аксиом следует, что любой элемент (и; v)

, представим в виде u + ve, где и, vє К и е2 = -1. Действительно,

(u; v) = (u; 0) + (0: v) = (u; 0) + (v; 0) * (0; 1) = и + ve.


Проверим выполнение четвертой аксиомы. Пусть

подалгебра алгебры
, содержащее в себе тело кватернионов и элемент е. Ясно, что U/
К х К. Если мы покажем, что К х K
U/, то тем самым
совпадает с
. Так как каждый элемент алгебры
имеет вид u+ve, где и, v
К. е2 = - 1, то u + vj
U/, так как и, v
К
U/, e
U/ и
- альтернативная алгебра (а, следовательно, замкнута относительно сложения и умножения). Итак, К х K
U/, откуда U/ = К х Kи, следовательно, имеет место выполнение четвертой аксиомы.

Так как на построенной модели выполняются все четыре сформулированные выше аксиомы алгебры октав, то эта система аксиом алгебры октав непротиворечива.

Мы показали, что любая октава представима в виде u+ve. где и, v

К. Пусть

u = a+bi+cj+dk, v = A+Bi+Cj+Dk, a,b,c,d, a,b,c,d

R.

Тогда,

и + vе = a+bi+cj+dk + (A+Bi+Cj+Dk)e = a+bi+cj+dk+ Ae+B(ie)+C(je)+D(ke).

Вычислим

ie = (i; 0) (0; 1) = (i

0 -

0; 1
i + 0
) = (0; i);

je = (j; 0) (0; 1) = (j

0 -

0; 1
j + 0
) = (0; j);

ke = (k; 0) (0; 1) = (k

0 -

0; 1
k + 0
) = (0; k),