Смекни!
smekni.com

Аксиоматический метод (стр. 3 из 3)

Доказательство: Ввиду G2 нужно доказать лишь единственность. Допустим, что в G имеется два единичных элемента –е1 и е2, т.е. на основании G2, для любого ае1=а и ае2= а. Тогда, в частности, е1* е2= е2 и е1* е2= е1. Следовательно, в силу G0 и свойств равенства е1= е2.

Теорема 2. Для каждого элемента группы имеется точно один обратный.

Доказательство: Ввиду G3 остаётся доказать лишь его единственность. Допустим, что в G для элемента а имеется два обратных а’ и а’’, т.е. таких элементов, что а’’  а = е и а  а’ = е. Тогда, в силу G1 (а’’  а)  а’ = а’’ и, следовательно, е  а’ = а’’  е. Отсюда следует, согласно G2, что а’ = а’’.

В мультипликативной терминологии обратный элемент для а обозначается через а-1, так что а-1 а = а  а-1= е, где единственный единичный элемент из G.

Теорема 3. Для любых элементов а, в, с, группы G из а * в = а * с следует в = с, и из в * а = с * а следует в = с.

Доказательство: Пусть а * в = а * с. Тогда а-1 * (а * в)=( а-1 * а) * в = е * в = в. С другой стороны, а-1 * (а * в)= а-1 * (а * с) = (а-1 * а) * с = е * с = с. следовательно, в = с. Пусть в * а = с * а. Тогда (в * а) * а-1= в * (а * а-1) = в * е = в. С другой стороны (с * а) * а-1= с * (а * а-1) = с * е = в. Значит в = с.

Пример 2. Теория конгруэнтности (равенства) отрезков. S множество всех отрезков и  отношение, называемое отношением конгруэнтности, так, что выражение х  у читается так: отрезок х конгруэнтен отрезку у. Выберем в качестве аксиом следующие утверждения:К1. Для всякого х из S х  х.

К2. Для любых элементов х, у, z из S, если х  z и у  z, то х  у.

Докажем теорему.

Теорема 1. Для любых элементов у и z из S, если у  z, то z  у.

Доказательство: По аксиоме К2, подставив z вместо х, получим, что если z  z и у  z, то z  у. Поскольку член конъюнкции z  z истинен на основании аксиомы К1, то из конъюнкции его можно убрать. Получим, что если у  z, то z  у.

Пример 3. Аксиоматическая теория натуральных чисел построена итальянским математиком Дж. Пеано на рубеже XIX и XX веков. Её первоначальными понятиями являются: непустое множество N, бинарное отношение ' и выделенный элемент 1. Аксиомы выбираются следующие:

(Р1) ( х) (х'  1).

(Р2) ( х, у) (х = у  х' = у')

(Р3) ( х, у) (х' = у'  х = у)

(Р4) (Аксиома индукции) (1М ^ ( х)(хМ х'М)) М=N.

Правилами вывода служат обычные логические правила Modus Ponens и правило подстановки.

Приведём доказательства двух теорем, непосредственно вытекающих из этих аксиом.

Теорема 1. ( х) (х'  х)

Доказательство: Рассмотрим множество. М = {х  N: х'  х }. Покажем, используя аксиому индукции (Р4), что М = N.

А) 1М, так как 1' 1 по аксиоме Р1.

Б) Пусть хМ, т.е. х'  х. Тогда, по аксиоме Р3, (х') '  х'. Следовательно, по определению, х' М.

Условия аксиомы Р4 выполнены. Тогда, по аксиоме Р4, М = N. Это и означает, что ( х) (х'  х).

Пример 4. Аксиоматическое построение канторовской («наивной») теории множеств на основе нескольких систем аксиом. Всего рассмотрим три системы аксиом.

Первоначальными понятиями теории Т, являются бинарные операции ,  (пересечение и объединение), унарная операция ' (дополнение), нульарные операции 0 и 1, фиксирующие два различных элемента – нулевой и единичный. Система аксиом 1 этой теории симметрична относительно операций , , 0, 1.

(А1) х  у = у  х.

(А2) х  у = у  х.

(А3) х  (у  z) = (х  у)  (х  z).

(А4) х  (у  z) = (х  у)  (х  z).

(А5) х  1 = х.

(А6) х  0 = х.

(А7) х  х' = 0.

(А8) х  х' = 1.

Первоначальными понятиями второй теории Т2 являются бинарная операция  и унарная операция '. Система аксиом 2 этой теории, наоборот, ассиметрична, «смещена» в сторону операции .

(В1) х  у = у  х.

(В2) (х  у)  z = х  (у  z).

(В3) х  у' = z  z'  х  у = х.

(В4) х  у = х  х  у' = z  z'.

Наконец, в третий теории Т3 , в которой первоначальными понятиями являются бинарное отношение С, бинарные операции  и , унарная операция ' и нульарные операции 0 и 1, система аксиом 3 следующая:

(С1) х  х.

(С2) х  у ^ у  z = х  z.

(С3) х  у  z  х  z ^ у  z.

(С4) z  х  у  z  х ^ z  у.

(С5) х  (у  z)  (х  у)  (х  z).

(С6) х  1.

(С7) 0  х.

(С8) 1  х  х'.

(С9) х  х'  0.


ЗАКЛЮЧЕНИЕ

По результатам проведённого курсового исследования по теме «Аксиоматический метод» можно сделать следующие выводы.

Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях – сформировался на протяжении более чем двухтысячелетней истории древней науки. У истоков идеи аксиоматического метода стоят титаны древнегреческой мысли Платон, Аристотель, Евклид.

Особую роль аксиоматический метод играет в математической науке. Хотя математика в наше время и является чрезвычайно обширной наукой знаний, имеющей многочисленные разделы и на первый взгляд разобщённые направления исследования, всё-таки математика – это единая наука. Её предмет исследований множество математических структур, её основной метод – аксиоматический метод. Можно сказать, что математическая наука достигает совершенства лишь тогда, когда ей удаётся пользоваться аксиоматическим методом, т.е. когда наука принимает характер аксиоматической теории. Более того, развитие наук в двадцатом столетии показало, что математика выделяется в системе наук именно тем, что она, по существу, единственная, использующая аксиоматический метод чрезвычайно широко, и что этот метод в значительной мере обуславливает поразительную эффективность математики в процессе познания окружающего мира и преобразующего воздействия на него.


СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1.Базылев В.Т., Дуничев К.И. Геометрия Учебное пособие для студентов физ.-мат. факультетов пединститутов. - М., «Просвещение» 1975.

2.Игошин В.И. Основания геометрии – Саратов, «Научная книга», 2004.

3.Игошин В.И. Векторная алгебра – Саратов, «Научная книга», 2005.

4.Столл Р. Множества. Логика. Аксиоматические теории – М., «Просвещение», 1968.

5.Метод аксиоматический – В кн. «Философская энциклопедия», т. 3 – М Сов. Энциклопедия, 1964.