Смекни!
smekni.com

Как писать математические тексты (стр. 7 из 9)

Эффективная формулировка принципа «не используйте ненужных букв» такова: «Не используйте ни одну букву однократно». Логики сказали бы это так: «Не оставляйте свободных переменных». В приведенном выше примере о непрерывных функциях символ f является свободной переменной. Лучший способ исключить это f — опустить его. Иногда предпочтительнее превратить f из свободной переменной в связанную. Большинство математиков сделало бы это так: «Пусть f — вещественнозначная непрерывная функция на компактном пространстве; тогда f ограничена». Некоторые логики станут, вероятно, настаивать на том, что f — по-прежнему свободная переменная в новой фразе (дважды свободная) и, с технической точки зрения, они будут правы. Чтобы сделать f связанной переменной, необходимо в каком-нибудь грамматически подходящем месте вставить оборот «для всех f», но в математике общепринято молчаливое соглашение, по которому всякой фразе предшествуют все кванторы общности, нужные для обращения всех свободных переменных в связанные.

Правило «никогда не оставлять в предложении свободные переменные», как и многие другие правила, сформулированные мной, иногда лучше нарушать, чем соблюдать. В конце концов, фраза — это условная единица изложения и если вам хочется оставить висеть в ней свободную переменную f, чтобы позднее, скажем, в этом же абзаце, этой f воспользоваться, то не думаю, что вас обязательно нужно гнать из авторского полка. Тем не менее, это — здоровый принцип, он гибок, но бить его вдребезги не следует.

Существуют и другие логические тонкости, способные остановить, или, в лучшем случае, задержать читателя, если с ними небрежно обращаться. Предположим, например, что в каком-то пункте вы написали

1
(*) ò | f (x)| 2dx < ¥
0

как некоторую, скажем, теорему о фиксированной функции f. Если позже вы столкнетесь с другой функцией g, которая тоже обладает этим свойством, то воспротивьтесь желанию сказать: «g также удовлетворяет (*)». Ведь это — бессмыслица с точки зрения и логики и обозначений. Вместо этого скажите «условие (*) остается верным, если заменить f на g» или, что еще лучше, назовите как-нибудь свойство (*) (в данном случае общепринятое название уже есть) и говорите так: «g тоже принадлежит пространству L²(0,1)».

Что можно сказать о выражениях типа «неравенство (*)», «уравнение (7)» или «формула (iii)»? Следует ли отмечать либо нумеровать все, что вынесено между строк? Мой ответ: нет. Причина: бесполезные ярлычки не нужны так же, как излишние предпосылки или никчемные обозначения. Небольшая часть внимания отвлекается на этот значок и уголком мозга читатель станет думать, к чему бы это. Если номер и вправду нужен, то внимание читателя будет незаметно подготовлено к будущей ссылке на эту же идею, но если ни к чему, то внимание и ожидание пропали впустую.

Итак, пользоваться ярлычками следует скупо, но не впадайте в крайность. Я не советую поступать так, как однажды поступил Диксон [2]. На стр. 89 он говорит: «Затем... мы получаем (1)» — а ведь на стр. 89 начинается новая глава и там вообще нет ни одной выделенной формулы, тем более с номером (1). Оказывается, ссылка (1) находится на стр. 90, на обороте, а мне бы и в голову не пришло искать ее там. Минут пять я был в шоке после этой шутки; когда же, наконец, я увидел свет, то почувствовал себя околпаченным и замороченным, и уже никогда не простил этого Диксону.

Громоздкие обозначения часто возникают при проведении индукции. Порой это неизбежно. Однако чаще достаточно объяснить переход от 1 к 2 и заключить воздушным «и так далее». Это не проигрывает в строгости подробным вычислениям, зато гораздо понятнее и убедительнее. Точно так же какое-нибудь общее утверждение об (n×n)-матрицах часто лучше всего доказывается не подробным выписыванием всевозможных символов aij с многоточиями, расположенными горизонтально, вертикально и по диагонали, а рассмотрением типичного частного случая (скажем 3×3).

Во всех моих рассуждениях о вреде обозначений есть своя логика. Дело в том, что для глупой вычислительной машины существует лишь одно строгое понятие математического доказательства. Для человеческого же существа, одаренного геометрической интуицией, ежедневно растущим опытом, нетерпением и неспособностью сосредоточиться на надоедливых деталях, это не годится. Еще одним примером тому может служить любое доказательство, состоящее из цепи выражений, соединенных знаками равенства. Такое доказательство легко написать. Автор начинает с первого равенства, совершает естественную подстановку, чтобы получить второе, группирует, переставляет, вносит и тут же вдохновенно сокращает множители и так продолжает до тех пор, пока не получит последнее равенство. Это — опять-таки разновидность кодирования, и читателю приходится одновременно расшифровывать и учиться по ходу дела. Такое удвоение работы бессмысленно. Если автор потратит лишние десять минут и напишет абзац тщательно обдуманных слов, он сбережет полчаса времени каждого из читателей и избавит их от лишних недоумении. Такой абзац должен представлять собой руководство к действиям, заменив бесполезный шифр, который лишь сообщает результаты действий и оставляет читателю гадать, как они получились. Руководство должно быть примерно таким: «Для доказательства подставим p вместо q, затем сгруппируем члены, переставим множители и, наконец, умножим и разделим на множитель r».

Известный прием плохого обучения — начинать доказательство со слов: «Для данного e положим d равным (e/(3M² + 2))½». Это — восходящий к традициям классического анализа способ писать доказательство от конца к началу. Его преимущество в том, что его легко проверить машине (но трудно понять человеку). Еще одно сомнительное преимущество этого же способа состоит в том, что в самом конце нечто оказывается меньше e, а не, скажем, (e(3M² + 7)/24)½. Как облегчить в данном случае жизнь читателю, очевидно: напишите доказательство от начала к концу. Начните, как всегда начинают авторы, фиксировав нечто меньшее, чем e, а потом делайте все, что нужно делать — когда нужно, умножайте на ЗM² + 7, потом — делите на 24 и т.д. и т.д. — пока не выйдет то, что выйдет. Ни одно из расположений материала не отличается изяществом, но второй способ по крайней мере легче схватывается и запоминается.

16. Правильно используйте обозначения. Со специальными знаками много вреда не наделаешь, но и здесь полезно быть последовательным и избегать в отдельности незаметных, а в совокупности разъедающих злоупотреблений. Например, хорошо использовать символ с таким постоянством, чтобы его словесный эквивалент был всегда одним и тем же. Это — хорошо, но почти невозможно. Тем не менее, лучше стремиться хоть к этому, чем ни к чему. Как следует читать Î: как сказуемое «лежит в» или как предлог «в»? Как правильно сказать: «Для всех хÎA имеем хÎB» или «Если хÎA, то хÎB»? Я решительно предпочитаю последнее (всегда читаю Î как «лежит в») и вдвойне осуждаю первое (ведь оба чтения встретились в одной фразе). Легко написать и легко прочитать: «Для всех х из A мы имеем: хÎB»; диссонанс и легкая двусмысленность обойдены. То же самое относится к Ì, несмотря на то, что словесный эквивалент здесь длиннее, и даже к символу £ . Фраза типа «Если только положительное число £3, то его квадрат £9» уродлива.

Не только абзацы, фразы, слова, буквы и математические символы, но и невинные с виду знаки обычного повествования могут служить источником недоумении; я имею в виду знаки препинания. Достаточно пары советов. Первый: уравнение, неравенство или включение, или любое другое математическое выражение, по своему содержанию эквивалентно некоторому предложению обычного языка и поэтому оно должно отделяться от соседних с ним выражений. Другими словами: расставляйте знаки препинания в символических фразах как в обычных словесных предложениях. Второй совет: не перетруждайте такие мелкие знаки, как точка или запятая. Читатель легко может проглядеть их, а такая оплошность вынуждает вернуться назад, вызывает замешательство, задерживает. Пример: «Предположим, что aÎX. X принадлежит классу C, ...». Точка между двумя буквами X несет излишнюю нагрузку. Вот еще: «Предположим, что X обращается в нуль. X принадлежит классу C, ...». Хорошее общее правило: никогда не начинайте фразу с символа. Если уж вы непременно хотите начать фразу с упоминания объекта, который обозначается данным символом, то и поставьте подходящее слово в самом начале: «Множество X принадлежит классу C, ...».

Перетруженная точка не хуже, чем перетруженная запятая. Не пишите «Если X обратим, X* также обратим»; лучше: «Если X обратим, то и сопряженный к нему X* также обратим». Не пишите также «Так как p¹ 0, pÎU»; вместо этого пусть будет: «Из того, что p¹ 0, следует, что pÎU». Даже обычная фраза «Не хотите, не надо» (т.е. ее математические эквиваленты) усваивается хуже, чем напыщенное «Если вам это и не нравится, то придется вам это проглотить». Я рекомендовал бы ставить после «если» «то» во всех математических текстах. Наличие слова «то» никогда не приведет к недоразумению, а вот его отсутствие — может.

Последняя техническая деталь, которая может помочь в писательской работе, и которую здесь следует упомянуть, в некотором смысле еще меньше, чем знаки препинания, в некотором смысле она просто невидима, но в другом смысле она заметнее всего на печатной странице. Я говорю о плане, архитектуре, внешнем виде страницы самой по себе и, вообще, всех страниц.