Во второй половине XYIII века большинство математиков рассматривало ньютоново определение понятия числа не только как целесообразное, но и как предельно широкое, охватывающее все возможные его виды. Определение Евклида начинает правильно трактоваться только как определение целого числа” [ 4 ].
Тематика книги отнюдь не случайно обрывается началом XIX века. Ее идея, видимо, такова. Да, действительно, понятие числа вызывало какие-то затруднения. Но это было довольно давно. Еще в эпоху античности или на рубеже XYII - XYIII веков. В крайнем случае, XIX. Но уж никак не в ХХ веке или того позже. Эвклид предварительно определил, Ньютон существенно уточнил. После чего все стало если и не совсем, то почти хорошо. А в общем числа это все: и целые, и дробные, и относительные, и рациональные, и иррациональные, и комплексные, такая вот сборная солянка. И нет никакой проблемы. Нужно только все это хорошенько выучить. Чтобы затем применять.
Чего стоит, однако, ньютоновское “уточнение”, когда одно неизвестное (число) определяется через два других неизвестных (величину и отношение). Они-то что значат? Ведь их не иначе как через число придется определять, совершая логический круг.
А как это излагается в начальной школе, где и закладывается фундамент образования?
Цитата:
“I. НАТУРАЛЬНЫЕ ЧИСЛА.
§ 1. Счет как основа арифметики. Натуральный ряд чисел.
Арифметика – это наука, изучающая числа и действия над ними. Счет является основой арифметики.
Прежде чем научиться вычислять, надо научиться считать и уметь записывать числа. Для счета люди пользуются названиями чисел и особыми знаками для краткого их обозначения.
Знаки для изображения чисел называются цифрами. Мы пользуемся десятью цифрами: 0, 1, 2, 3, 4, 5, 6, 7, 8, и 9. Эти цифры называются а р а б с к и м и.
Для обозначения отсутствия предметов употребляется число нуль, которое изображается цифрой 0 (рис. 1 – ветка с птичками и надписью “На ветке сидело 5 птиц” и “Птицы улетели. На ветке осталось 0 птиц”).
Все числа: 1, 2, 3, 4, …, 9, 10, 11, …, 16, 17, 18 и так далее без конца называют натуральным рядом чисел, а сами числа – натуральными числами. В натуральном ряду каждое число, начиная с 2, на единицу больше предыдущего.
Натуральные числа являются ц е л ы м и числами. К целым числам относится и число нуль, но оно не принадлежит к натуральным числам.
Не следует смешивать понятия “числа” и “цифры”. Различных чисел можно написать сколько угодно, а цифр – только десять. Любое натуральное число мы записываем с помощью этих десяти цифр.
Слово “цифра” в обычной речи часто употребляется в том же смысле, в каком в арифметике употребляется термин “число”; например говорят о цифрах семилетнего плана.
Каждое из первых девяти натуральных чисел 1, 2, 3, …, 9 записывается одной цифрой, эти числа называются однозначными числами. Число нуль относится к однозначным числам. Все остальные натуральные числа записываются с помощью нескольких цифр и называются многозначными числами.
По количеству входящих в них цифр многозначные числа делятся на двузначные, трехзначные, четырехзначные и т.д.
П р и м е р ы: 22, 35 и 47 – двузначные числа; 305; 666 и 700 – трехзначные числа; 506 066 – шестизначное число” [ 5 ].
Где здесь определение чисел? Его просто нет. Ни в каком, хотя бы сколько-нибудь приблизительном или описательном виде. Как можно “изучать числа”, не зная, что это такое?
Зато в одном этом параграфе вводится сразу целый букет производных терминов: натуральные числа, счет, натуральный ряд чисел, действия над числами, запись чисел, особые знаки, краткое обозначение чисел, знаки для изображения чисел, цифры, арабские цифры, число нуль, не принадлежащее к натуральным числам и поясняемое метафорой “птицы улетели”, число, записываемое с помощью десяти цифр, цифра, понимаемая как число, число на единицу больше предыдущего, целые числа, целое число нуль, однозначные и многозначные числа, числа в виде нескольких цифр, двузначные, трехзначные и шестизначные числа. И все это практически без пояснений.
Здесь обозначен второй универсальный способ сокрытия незнания: если определение отсутствует, число неопределяемых понятий следует увеличить. Чтобы так сказать “проскочить за дымом”.
Это и есть то, что называется школьной подготовкой, определяющей понимание чисел, к которому в последующих курсах уже больше не возвращаются.
Из этого, к сожалению, не вытекает, что математики знают, что такое число.
Еще цитата:
“Часть первая.
Натуральные числа
Глава 1.
НУМЕРАЦИЯ
§ 1. Счёт
Уже в очень отдаленные времена людям приходилось считать окружающие их предметы: членов своей семьи, домашних животных, оружие, убитых или пойманных на охоте зверей и т.д.
История говорит нам, что первобытные люди умели сначала отличать только один предмет от многих; затем они стали считать до двух и до трех, а все, что было больше трех, обозначали словом “много”.
С течением времени люди овладели счетом на пальцах; если же предметов было больше, чем пальцев у человека, то наши отдаленные предки уже испытывали затруднения.
Для выполнения счета пользовались также различными простыми приспособлениями, например: зарубками на палке, пучками прутиков, камешками и различными бусами. Предметами, которые сосчитывались, было немного, поэтому и счет был не сложный.
Считая эти предметы, люди пришли к понятию числа предметов. Они поняли, что на вопрос, сколько охотник убил зверей, можно ответить, показав пять пальцев своей руки. С другой стороны, если у человека имеется пять стрел, то он тоже может показать пять пальцев.
Таким образом, хотя предметы совершенно различны (звери и стрелы), но их имеется поровну, т.е. стрел столько же, сколько и зверей. Значит, и группе зверей, и пучку стрел соответствует одно и то же число – пять.
Прошло очень много времени, прежде чем люди освоились с большими числами. Они шли от числа один, или единица, к большим числам очень медленно” [ 6 ].
О счете до трех и “много” - это из “Робинзона Крузо”. Но где здесь определение чисел? Или хотя бы более менее вразумительное их описание?
К чему эти исторические фантазии? Что они объясняют? Или без этой выдуманной “истории” числа “не объяснимы”?
И снова куча дополнительных терминов: “нумерация”, “счет”, “один предмет”, “многие”, “два”, “три”, “больше”, приспособления для счета, “пять” пальцев или стрел, “столько же”, “большие числа”. При этом ни одного определения.
Это чисто гуманитарное описание. Образуемое ворохом неопределяемых слов, каждое из которых само по себе почти ничего не значит, но в совокупности “отражающих” разные “стороны” или “грани” рассматриваемого объекта. Создающее общее впечатление или интуитивное понимание, составленное из разнородных признаков.
И на такой рыхлой базе строится основание математики. Справедливо гордящейся логической безупречностью. Это, конечно, правильно, но лишь на позднем, а не на раннем ее этапе. Как и в других старых науках, включая физику.
К этому можно добавить много других примеров, но это уже излишне. Главное состоит в том, что математики не возражают против таких пособий. Значит, считают их допустимыми и, стало быть, правильными.
Что можно извлечь из подобных текстов?
Это конечно “несерьезные” школьные книжки. В дальнейшем, однако, никак не комментируемые или уточняемые. Просто принимаемые за “базу”.
Виды чисел
Не имея определения чисел, т.е. еще не зная, что это такое, математики сразу же переходят к классификации “видов чисел”.
Есть числа натуральные, дробные, относительные, рациональные, иррациональные, комплексные, даже именованные. В сочетании с правилами их использования образуется интуитивное как бы понимание (знание) чисел.
Дроби делятся на “простые” и “десятичные”.
Простая дробь есть два числа, сопоставляемых между собой (числитель и знаменатель). Десятичная дробь есть частный случай и другая форма записи простой дроби, знаменатель которой выражен степенью числа 10.
С точки зрения логики дробь вовсе не является каким-то “новым числом”, т.к. она образована парой чисел, сопоставляемых между собой, притом в определенной последовательности (порядок сопоставления не безразличен: 2/3 не то же самое, что 3/2).
Относительное число есть тоже пара, но образованная уже числом и неравенством (т.е. не числом), сокращенно обозначаемой единой записью, выражающей координату [ 7 ]. Это тоже почему-то считается “числом особого рода”.