Смекни!
smekni.com

Высшая математика (стр. 1 из 5)

(шпаргалка)

Осн. понятия

Грани числовых мн-в

Числовые последовательности

Непр. ф-ции на пр-ке

1. Осн. понятия

Мат.модель – любой набор кр-ний; неравенств и иных мат. Соотношений, которая в совокупности описывает интересующий нас объект.

Мн-во вещест. чисел разбивается: на рационал. и иррац. Рац. – число, которое можно представить в виде p/q где p и q – цел. числа. Иррац. – всякое вещественное число, которое не явл. рационал.

Любое вещ. число можно представить в виде бесконеч. десят. Дроби а, а1,а2…аn… где а –люб. число, а а1, а2 … аn числа, приним. целые знач.

Некоторые числовые множества.

Мн-ва – первичное понятие, на уровне здравого смысла, его не возможно точно определить.

Для описания мн-в единая символика, а именно, если в мн-во А входят только эл. х, которые обладают некоторым св-вом S(x), то тогда мн-во А описывается А={х½ вып-ся усл S(x)}.

Подмн-ва – если А и В 2 мн-ва и все эл-ты мн-ва А сод-ся в В, то А наз-ся подмн-вом В, А В, если в В сод-ся эл-ты отличные от эл-тов мн-ва А, то В строго шире А, то А наз-ся собственным подмн-вом В. АÌВ. А=В- мн-ва совпадают.

Операции с мн-воми А В={х!х принадл. либо А, либо В} – обьединение мн-в А и В.

АÇ В={х½хÎА и хÎВ} пересечение мн-в А и В.

А\ В={х½хÎА, но хÏВ}дополн. к м-ву В во мн-ве А

Числовые мн-ва

R,N,Z,Q - стандартные обозначения мн-в на числ. прямой. (а,в)= {х½а<х<в} – интервал из R (открытый промежуток, т.к. не содержит границ)

[а,в] – замкнутый промежуток сод. гранич. т-ки.

(а,в] – полуинтервал.

Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную.

2. Грани числовых мн-в

Пусть Х – непустое мн-во веществ. чисел.

Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым

Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во.

Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено.

Точные грани числовых мн-в

Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х* , то оно min мн-ва Х

Пример Х=[0,1) то max[0,1) не $. min [0,1)=0

Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва.

Верхн. грань – supX=x*, а нижн. грань infX=x*

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. чисел.

3. Числовые последовательности

Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, … ,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти .

!Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти.

Основные способы задан. посл-ти:

а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та.

б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти.

Пример:

а) xn=5nx1=5, x2=10

б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47

Ограниченные последовательности(ОП)

Посл-ть {xn} наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xn£M"n (xn³m"n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.

Посл-ть {xn} наз-ся неогранич., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству ½xn½>А.

Сходящиеся и расходящиеся посл-ти

Св-ва сходящихся посл-тей

Теорема «Об единственности пределов»

Теорема «Сходящаяся посл-ть ограничена»

Теорема «О сходимости монотон. посл-ти»

4. Сходящиеся и расходящиеся посл-ти

Большое внимание уд-ся выяснению вопроса: обладает ли данная посл-ть сл-щим св-вом (сходимости) при неогранич. Возрастании номеров посл-ти эл-ты посл-ти сколь угодно близко приближаются к некоторому числу а или же этого св-ва нет.

Опр Если для любого e >0 найдется такой номер N, для любого n >N:½xn-a½< e

Все посл-ти имеющие предел наз-ся сходящимися, а не имеющее его наз-ся расходящимися.

Связь сходящихся посл-тей и б/м.

Дает сл. теорему

Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+an, где посл-ть {an}®0, т.е. является б/м.

Док-во

а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an.

Свойство б/м

Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, частным и умножением.

Т-ма о св-вах б/м

а) {xn}и{yn}-б/м пос-ти, б/м

1) их сумма, разность и произведение являются б/м

2) Произведение любой огранич. посл-ти на б/м являются б/м

!О частном не говорят, т.е. частное б/м может не быть б/м.

Посл-ть {xn} явл. б/б, если для любого числа с>0 сущ-ет номер N для всех номеров n>N½xn½>c.

!Понятие б/б не совпадает с неограниченной: посл-ть может быть неогранич., но не является б/б.

Пример 1,1/2,3,1/4,5,1/6,7… явл. неогранич., т.е. принимает сколь угодно большие по модулю значения, однако в ней имеются эл-ты со сколь угодно большими номерами принимающие дробные знач. и сколь угодно малые по модулю.

Св-ва сходящихся посл-тей

Теорема «Об единственности пределов»

Если посл-ть xn сходится, то она имеет единственный предел.

Док-во (от противного)

{xn} имеет два разл. Предела a и b, а¹b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e= (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.

Теорема «Сходящаяся посл-ть ограничена»

Пусть посл-ть {xn}®а e >о N:"n>N½xn-a½<e эквивалентна а-e<xn<a+e"n>N => что каждый из членов посл-ти удовлетворяет неравенству½xn½£c = max {½a-e½,½a+e½,½xn½,…,½xn-1½}

Теорема «Об арифметических дейсьвиях»

Пусть посл-ть {xn}®a,{yn}®b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:

а) предел lim(n®¥)(xn±yn)=a±b

б) предел lim(n®¥)(xn*yn)=a*b

в) предел lim(n®¥)(xn/yn)=a/b, b¹0

Док-во:

а)xn±yn=(а+an)±(b+bn)=(a±b)+(an±bn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный a±b. Аналогично др. св-ва.

б) xn*yn=(а+an)*(b+bn)=ab+anb+abn+anbn

an*b – это произведение const на б/м

а*bn®0, anbn®0, как произведение б/м.

=> поэтому в правой части стоит сумма числа а*b+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xn*yn сводится к a*b

Практический вывод состоит в том, что нахожд. пределов посл-тей заданных сл. выражениями можно сводить к более простым задачам вычисления lim от составляющих этого выр-ния

Посл-ть {xn} наз-ся возр., если x1<…<xn<xn+1<…;

неубывающей, если x1£x2£…£xn£xn+1£…; убывающей, если x1>x2>…>xn>xn+1>…; невозр., если x1³x2³…³xn³xn+1³…

Все такие посл-ти наз-ся монотонными. Возр. и убыв. наз-ся строго монотонными

Монотонные посл-ти ограничены с одной стороны, по крайней мере. Неубывающие ограничены снизу, например 1 членом, а не возрастыющие ограничены сверху.

Теорема «О сходимости монотон. посл-ти»

Всякая монотонная посл-ть явл-ся сходящейся, т.е. имеет пределы.

Док-во Пусть посл-ть {xn} монотонно возр. и ограничена сверху. X – все мн-во чисел которое принимает эл-т этой посл-ти согласно усл. Теоремы это мн-во огранич., поэтому по соотв. Теореме оно имеет конечную точную верх. грань supXxn®supX (обозначим supX через х*). Т.к. х* точная верх. грань, то xn£x* "n. "e >0 вып-ся нер-во $xm(пусть m- это n с крышкой):xm>x*-e при "n>m => из указанных 2-х неравенств получаем второе неравенство x*-e£xn£x*+e при n>m эквивалентно ½xn-x*½<e при n>m. Это означает, что x* явл. пределом посл-ти.

Экспонента или число е

Ф-ции одной переменной

Обратные ф-ции

6. Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1) . Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…

Док-ть сходимость посл-ти (1)

Для док-ва введем вспом-ю ф-цию y=(1+x)^1/x, x>0 Ясно что при знач. x=1,1/2,1/3,…,1/n,… значение ф-ции y совпадает с соответствующими эл-ми (1).

Док-м что ф-ция у монотонно убывает и огран. сверху => монотонное возр. посл-ти (1) и ограниченность ее сверх. Поскольку lgx явл-ся монотонно возр., но монотонное убыв. ф-ции у и ее огранич. сверху эквивалентны том, что ф-ция lgy, которая равняется 1/хlg(1+x) (2) имеет те же самые св-ва, т.е. 0<x1<x2, то тогда 1/x1*lg(1+x1)>1/x2**lg(1+x2) (3). Огранич. сверху $M:1/xlg(1+x)£lgM"x>0 (4). Возьмем любую лин. ф-цию вида y=kx которая превосходит lg(1+x) при всех x>0.

tga1=(lg(1+x1))/x1 a1>a2=>tga1>tga2

tga2=(lg(1+x2))/x2

Поскольку a1>a2, то tga1>tga2, а это равносильно равенству (3). Поскольку y>lg(1+x) "x>0 => kx>

>lg(1+x) "x>0

Принимая во внимания ф-ции у с пос-ть xn приходим к нужному утверждению. Число е явл-ся неизбежным спутником динамических процессов: почти всегда показатели изменяющиеся во времени характеризующие такие процессы зависят от времени через экспонициальную ф-цию y=e^x и ее модификации.