называется рядом Тейлора функции x(
Если x(
Понятие абстрактной аналитической функции используется в широко применяемом на практике методе малого параметра.
§6. Метод малого параметра в простейшем случае
Рассмотрим следующее уравнение:
Аx –
Здесь А, С Î L(X,Y) и y Î Y заданы,
то, согласно теореме 9, оператор А–
Отсюда видно, что в круге (2) решение является аналитической функцией параметра
На этой идее основывается метод малого параметра для уравнения (1). Подставим ряд (4) в уравнение (1) и, согласно теореме единственности разложения в степенной ряд, приравниваем коэффициенты при одинаковых степенях
Таким образом, мы приходим к следующей рекуррентной системе уравнений для определения x0, x1, …:
Аx0=y, Аx1=Сx0, …, Аxк=Сxк-1, …
Так как А непрерывно обратим, то отсюда последовательно находим
x0=А–1y, x1= А–1(СА–1)y, …, xк= А–1(СА–1)кy, …
Следовательно,
Мы получили решение (3), разложенное в степенной ряд. Если мы хотим оборвать степенной ряд и ограничиться приближенным решением
то можно оценить ошибку. Вычитая из ряда (5) его частичную сумму (6) и оценивая разность по норме, получим
§7. Метод малого параметра в общем случае
Пусть дано уравнение
А(
Здесь А(
Аналитичность А(
Из аналитичности А(
Отсюда вытекает, что в круге
при этом x(
Подставляя ряд (3) в уравнение (1) и учитывая разложения (2), приходим к следующей системе для неопределенных коэффициентов x0, x1, x2, …:
А0x0 = y0, А0x1+А1x0 = y1,
А0x2 + А1x1 + А2x0 = y2, (4)
. . . . . . . . . . .
Здесь А0 = А(0) непрерывно обратим. Решая последовательно уравнения получившейся системы, находим
Возникающие здесь формулы довольно громоздки, однако этим путем можно найти решение уравнения с любой степенью точности. Метод малого параметра особенно удобен в тех случаях, когда обращение оператора А(0) – задача более простая, чем задача обращения оператора А(
§8. Метод продолжения по параметру
8.1. Формулировка основной теоремы
В качестве еще одного приложения теорем об обратных операторах рассмотрим один из вариантов метода продолжения по параметру. Пусть
Существует постоянная
Ниже будет доказана следующая теорема.
Теорема 14. Пусть А(λ) – непрерывная на [0, 1] оператор-функция (при каждом
Замечание к теореме 14. Если выполнено условие I при
Действительно, пусть