с эллиптическим отверстием
Оглавление
1. Общетеоретическая часть
2. Прикладная часть
2.1 Физическая постановка задачи
2.2 Упругие свойства материала
2.3 Математическая постановка задачи
2.4 Аналитическое решение
2.5 Иллюстрация распределения напряжений
Используемая литература.
Приложение 1. (Расчетная схема на MathCad 7.0 )
Приложение 2. (График распределения напряжений).
1. Общетеоретическая часть
Общая система уравнение теории упругости выглядит следующим образом:
(1)Уравнения равновесия применительно к рассматриваемой задаче, т.е. когда напряжения зависят только от двух координат, запишутся так:
(2)В нашей задаче искомыми являются шесть функций компонент тензора напряжений
. Но в уравнения равновесия (2) не входит , тем самым этой функции определяется особая роль. Для простоты последующих математических выкладок примем следующие предположения. Пусть для f1(x1,x2) и f2(x1,x2) существует потенциал, т.е. такая функция U(x1,x2) для которой выполняются условия: (3)Так как силы f1 и f2задаются при постановки задачи, то потенциал U так же известная функция. Подставляя (3) в (2) получим:
(4)Введем также еще две функции F(x1,x2) и y(x1,x2), которые называются функциями напряжений и вводятся следующим образом:
Нетрудно видеть, что при подстановки всех этих формул в систему (4) все три уравнения будут равны нулю. Теперь если мы найдем функции F(x1,x2) и y(x1,x2), то будут найдены и функции компонент тензора напряжений, кроме компоненты
.Для упрощения дальнейших выкладок сделаем следующие преобразования. Так как тензор модулей упругости Сijmn представляет собой матрицу 6х6 из которых 21 компонента независимая, то для тензора напряжений и тензора деформаций вводится матрица столбец:
Тогда уравнения Коши запишутся следующим образом:
а через напряжения компоненты деформации определяются по закону Гука:
(5)где aij - компоненты матрицы независимых постоянных тензора упругих податливостей Dijmn.
Обозначим
как неизвестную функцию D(x1,x2), тогда из закона Гука следует, что:а выражение для
будет равно:Теперь введем приведенные коэффициенты деформации
, для которых имеет место выражение: , где i,j=1..6 (6)Подставим выражение для
в обобщенный закон Гука, тогда с учетом приведенных коэффициентов деформаций эти выражения примут вид:Подставляя эти выражения в уравнения Коши получим следующую систему:
(7)Уравнения системы (7) включают в себя и уравнения Коши и закон Гука. В этой системе величины
- константы, величины и D зависят от двух координат x1и x2, а перемещения ui - функции трех координат.Система (7) является системой в частных производных относительно uiи решается последовательным интегрированием уравнений. Интегрирование следует проводить в следующем порядке - сначала необходимо проинтегрировать 3, 4 и 5 уравнения. После интегрирования 3-го уравнения получим:
(8)Подставляя u3в 4-ое уравнение и интегрируя его получим:
(9)Аналогично с 5-ым уравнением:
(10)Подставляя полученные перемещения в неиспользованные соотношения уравнений Коши, и приравнивая к 0 сомножители при степенях x3, получим:
(11) (12) (13)Исходя из того, что:
функция D будет иметь вид:
(14)Тогда с учетом системы (7) получим:
(15)Исключая V1, U1, W1 ( путем дифференцирования, сложения и вычитания) получим:
(16) (17)Подставляя в уравнения (16) и (17) выведенные нами выражения для напряжений через функции F(x1,x2) и y(x1,x2) и группируя получим:
(18)где L4, L3, L2 - дифференциальные операторы в частных производных 4-го, 3-го и 2-го порядков:
Уравнения (18) представляют собой систему 2-х дифференциальных уравнений в частных производных. Уравнения - линейные, неоднородные, с постоянными коэффициентами.
Общее решение системы (18) для функций напряжения можно представить в виде:
F0и y0 - общее решение соответствующей однородной системы:
(19)F*и y* - частные решения неоднородной системы уравнений (18). Частные решения зависят от правых частей уравнений и если эти правые части несложны, то и частные решения обычно описать нетрудно.
Чтобы получить общее решение однородной системы (19) исключим из нее y0:
(20)
В силу симметрии L их можно менять местами:
(21)Таким образом, мы получили линейное дифференциальное уравнение 6-го порядка для функции F. Аналогично находим уравнение для y:
(22)Оказалось, что F0и y0 должны удовлетворять одинаковым условиям. Оператор 6-го порядка можно разложить на 6-ть линейных операторов 1-ого порядка Dkи уравнение (21) представить в виде:
(23)Из теории диф. уравнений и условия что функция F0 зависит только от x1и x2для Dkимеем:
(24)где
- это корни алгебраического (характеристического) уравнения шестой степени, соответствующего дифференциальному уравнению (21).Интегрирование линейного уравнения 6-го порядка можно свести к последовательному интегрированию шести уравнений первого порядка. В результате получим следующие общие выражения: