Смекни!
smekni.com

Задача о бесконечной ортотропной пластинке (стр. 2 из 2)

Если среди корней характеристического уравнения есть кратные, задача упрощается, однако решение системы (19) может быть найдено в любом случае исходя из следующих рассуждений.

Любые 6 вещественных чисел можно принять в качестве значений независимых компонент тензора напряжений в данной точке упругого анизотропного тела. Удельная потенциальная энергия деформации есть величина положительная при любых вещественных и не равных нулю значениях компонент тензора напряжений в данной точке. Исходя из этих предположений можно доказать теорему, согласно которой алгебраическое характеристическое уравнение системы (21), не имеет вещественных корней. Поэтому можно утверждать, что числа

в общем решении системы (19), а также в условиях связи всегда комплексные или чисто мнимые.

Наряду с комплексными параметрами вводят и систему комплексных переменных:

Введение комплексных переменных позволяет использовать при аналитическом решении рассматриваемой задачи об упругом равновесии анизотропного тела математический аппарат и методы функций комплексных переменных. Эти методы, применительно к данной задаче являются очень эффективными и позволяют получить аналитическое решение многих плоских задач теории упругости анизотропного тела.

2. Прикладная часть

2.1 Физическая постановка задачи.


Рассмотрим бесконечную пластинку из ортотропного материала с эллиптическим отверстием в центре. Направление главных осей эллипса совпадает с главными осями упругости материала, усилия приложены на бесконечности вдоль главных осей.

Введем следующие обозначения 2a, 2b - главные оси эллипса, с=a/b, р - усилие на единицу площади. В нашем случае отношение полуосей эллипса с=1/2. Вдоль оси 1 на бесконечности приложено растягивающее усилии р, а вдоль оси 2 - сжимающее -р. Наша задача найти напряжения на краю отверстия и построить их эпюру.

2.2 Упругие свойства материала.

Пластинка сделана из стеклопластика C-II-32-50 со следующими характеристиками:

Е1=13,0 ГПа;

Е2=19,8 ГПа;

Е3=7,8 ГПа;

G12=4,05 ГПа;

G13=6,4 ГПа;

G23=3,2 ГПа;

n13=0.25;

n32=0.14;

n12=0.176;

n23=0.06.

2.3 Математическая постановка задачи.

Уравнения равновесия применительно к нашей задаче, когда напряжения зависят только от двух координат и fi=0, запишутся так:

Граничные условия будут иметь следующий вид:

или в развернутом виде применительно к нашей задаче:

где n - нормаль к контуру отверстия.

2.4 Аналитическое решение.

Решая данную задачу по методу изложенному в первой части с учетом того, что материал у нас ортотропный выясняем что характеристическое уравнение для определения коэффициентов

распадается на уравнения 4 и 2 степени:

Отсюда немедленно вытекают следующие соотношения:

Как мы увидим в дальнейшем этих соотношений достаточно и искать непосредственно

не требуется.

Для решения нашей задачи воспользуемся формулами полученными в работе [1]. Нам надо будет провести только некоторые обобщения и объединение этих формул.

Определим для начала необходимые нам константы аij:


введем теперь следующие обозначения:

Беря уравнение контура в параметрическом виде, т.е. полагая:

введем еще обозначения для функций, зависящих от параметра

:

Нас будет интересовать только напряжение у края отверстия -

где, как показывает ряд решенных задач, оно получается наибольшим. Опуская промежуточные выкладки приведем две формулы (при растяжении вдоль большой и малой оси эллипса):

для нашей задачи в силу принципа суперпозиции (а его можно применить, так как мы рассматриваем линейную связь между напряжениями и деформациями, а также считаем их малыми) получим следующую общую формулу:

2.5 Иллюстрация распределения напряжений.

Для построения эпюры напряжений на краю отверстия воспользуемся возможностями математического пакета MathCad 7.0. Используя найденную нами формулу рассчитаем напряжения

в зависимости от угла и отложим их на графики от контура отверстия на продолжении лучей, проведенных из центра через данные точки контура. Положительные напряжения изображены стрелками направленными от центра к периферии, отрицательные - стрелками направленными к центру. При расчетах полагалось р=1.

Результаты расчета и график распределения напряжений приведены соответственно в приложениях 1 и 2.

Проведем небольшой анализ полученных результатов. Как мы видим максимальное напряжение наблюдается в точках

, оно равно
-6р. То есть наблюдаем концентрацию в 6 раз по сравнению с пластинкой без отверстия.

Используемая литература:

1. Лехницкий С.Г. Теория упругости анизотропного тела. Гостехиздат М. 1950 г.

2. Лехницкий С.Г. Теория упругости анизотропного тела. Изд. "Наука" М. 1977 г.

3. под ред. Любина Д. Справочник по композиционным материалам.. Машиностроение М. 1988 г.



Приложение 2. (График распределения напряжений)