Смекни!
smekni.com

Элементы теории множеств (стр. 1 из 5)

Курсовая работа

Выполнил студент 3 курса 4 группы физико-математического факультета Данилюк Ярослав Борисович

Мозырский государственный педагогический университет

Мозырь 2006

Введение

До второй половины XIX века понятие “множества” не рассматривалось в качестве математического (“множество книг на полке”, “множество человеческих добродетелей” и т. д. — всё это чисто бытовые обороты речи). Положение изменилось, когда немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным “множеством”. Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого “натуральным рядом” — который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано. При этом общему понятию “множества”, рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде “множество есть многое, мыслимое как единое”, и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не “теорией множеств” (этот термин появился много позднее), а учением о множествах (Mengenlehre).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер, полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что “бог создал натуральные числа, а всё прочее — дело рук человеческих”). Тем не менее, некоторые другие математики — в частности, Готлоб Фреге и Давид Гильберт — поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык.

В начале XX века Бертран Рассел, изучая наивную теорию множеств, пришел к парадоксу (с тех пор известному как парадокс Рассела). Таким образом, была продемонстрирована несостоятельность наивной теории множеств и, связанной с ней, канторовской программы стандартизации математики.

После обнаружения антиномии Рассела часть математиков (например, Л. Э. Я. Брауэр и его школа) решила полностью отказаться от использования теоретико-множественных представлений. Другая же часть математиков, возглавленная Д. Гильбертом, предприняла ряд попыток обосновать ту часть теоретико-множественных представлений, которая казалась им наименее ответственной за возникновение антиномий, на основе заведомо надёжной финитной математики. С этой целью были разработаны различные аксиоматизации теории множеств. Особенностью аксиоматического подхода является отказ от, лежащего в основе программы Кантора, представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества “существуют” исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики.

Таким образом, понятие совокупности, или множества, принадлежит к числу фундаментальных понятий, данных нам природой, и предшествует понятию числа. В своем первичном виде оно не дифференцируется на понятие конечного и бесконечного множеств.

Плодотворность теоретико-множественной концепции заключается в том, что она породила весьма богатый и мощный арсенал широких понятий и универсальных методов.

В связи с этим возникает круг задач, которые разрешимы только средствами теоретико-множественной концепции.

Целями данной курсовой работы являются:

Изучение исходных понятий теории множеств, а также аксиоматики теории множеств.

Систематизация теоретико-множественной концепции.

Интеграция научной информации в учебный процесс.

Задачи курсовой работы “Элементы теории множеств”:

Поиск наиболее полного, содержательного и объективного ответа на вопросы разделов теории множеств.

Изучение определений и теорем в соответствии с различными научными подходами.

Создание компьютерной презентации с целью использования в качестве наглядного пособия при изучении теории множеств.

Создание электронного учебника, позиционируемого как справочное пособие для домашнего самостоятельного изучения.

Глава 1. Исходные понятия теории множеств

1.1. Множество как первоначальное неопределяемое понятие в математике

В 70-х годах прошлого века немецкий математик Георг Кантор, исследуя тригонометрические ряды и числовые последовательности, встал перед необходимостью сравнить между собой бесконечные совокупности чисел. Для решения возникших проблем Кантор и выдвинул понятие множества. Согласно канторовскому определению, множество есть любое собрание определенных и различимых между собой объектов нашей интуиции или интеллекта, мыслимое как единое целое. Это определение не накладывает никаких ограничений на природу элементов множества, что предоставляет нам значительную свободу. В частности, допустимо рассматривать множества, элементы которых по той или иной причине нельзя точно указать (например, множество простых чисел).

В современной математике понятие множества является одним из основных. Универсальность этого понятия в том, что под него можно подвести любую совокупность явлений, предметов и объектов реального мира. Сами множества так же могут объединяться во множества. Например, математики говорят о множестве фигур на плоскости, о множестве тел в пространстве, но каждую фигуру, каждое тело они мыслят как множество точек.

Суть понятия “множество” вполне передается словами: “совокупность”, “собрание”, “набор” и т.д. Однако, как абстрактное математическое понятие “множество” неопределимо.

Несмотря на это, определить какое-либо конкретное множество - задача не из трудных. Определить любое конкретное множество - значит определить, какие предметы (явления, объекты) принадлежат данному множеству, а какие не принадлежат. Иначе говоря, всякое множество однозначно определяется своими элементами.

Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обозначаются прописными буквами латинского или готического алфавита: A, B, ... , M, K, ... . Если множество A состоит из элементов a, b, c, ... , это обозначается с помощью фигурных скобок: A = {a, b, c, ...}. Если a есть элемент множества A , то это записывают следующим образом: aA. Если же a не является элементом множества A , то пишут aA. Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом . Пустое множество является частью любого множества.

1.2. Способы задания множеств

Для того, чтобы задать множество, нужно указать, какие элементы ему принадлежат (или могут принадлежать). Это можно сделать различными способами:

перечислением элементов: M = {m1 ,m2 , ... , mn};

характеристическим условием (свойством): M = {x | P(x)};

порождающим правилом: M = {x | x = f(t)};

Первый способ полностью описывает множество. Однако он применим только для конечных (а, вообще говоря, для конечно обозримых множеств). При задании множеств перечислением обозначения элементов обычно заключают в фигурные скобки и разделяют запятыми. В этом случае считается несущественным порядок перечисляемых элементов.

Пример.

Задание множества первых пяти нечетных натуральных чисел перечислением элементов: M = {1, 3, 5, 7, 9}.

Второй способ позволяет определить принадлежность элемента x множеству M и, поэтому, пригоден для описания не только конечных, но и бесконечных множеств. Характеристическое условие обычно задается в форме логического утверждения, которое может выражаться словами, математическими уравнениями, неравенствами. Если для данного элемента условие выполнено, то он принадлежит определяемому множеству, в противном случае не принадлежит. Характеристическое условие может состоять из нескольких условий: в таком случае в записи могут использоваться следующие знаки:

●  - равносильно “и”;

● V – равносильно “или”;

●  - квантор всеобщности;

●  - квантор существования.

Задание множеств их характеристическим свойством иногда приводит к осложнениям. Может случиться, что два различных характеристических свойства задают одно и то же множество, т. е. всякий элемент, обладающий одним свойством, обладает и другим, и обратно.

Пример.

Элемент x множества М есть целое число, квадрат которого меньше нуля.

M = {x | xZ  x2 < 0}.

Третий способ задания множества сводится к построению конкретных представителей как конечных, так и бесконечных множеств. Порождающее правило описывает способ построения объектов, которые являются элементами определяемого множества.

Пример.

Зададим два множества перечислением: M1 := {1,2}; M2 := {1}.

Зададим множество M3 правилом построения его элементов:

M3 := {x | x = (x1,x2), x1M1, x2M2}.

Правило читается следующим образом: Для того, чтобы построить элемент множества M3, надо взять один объект из множества M1, второй объект из множества M2 и составить из них упорядоченную пару (часто говорят кортеж длины 2). Руководствуясь этим правилом, можно построить каждый элемент множества M3: (1,1), (2,1).

1.3. Равенство множеств

Определение равенства множеств. Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из xA следует xB и обратно, из xB следует xA.