Смекни!
smekni.com

История математики (стр. 6 из 6)

Аксиоматический метод Гильберта вошел почти во все разделы математики 20 в. Однако вскоре стало ясно, что этому методу присущи определенные ограничения. В 1880-х Кантор попытался систематически классифицировать бесконечные множества (например, множество всех рациональных чисел, множество действительных чисел и т.д.) путем их сравнительной количественной оценки, приписывая им т.н. трансфинитные числа. При этом он обнаружил в теории множеств противоречия. Таким образом, к началу 20 в. математикам пришлось иметь дело с проблемой их разрешения, а также с другими проблемами оснований их науки, такими, как неявное использование т.н. аксиомы выбора. И все же ничто не могло сравниться с разрушительным воздействием теоремы неполноты К.Гёделя (1906–1978). Эта теорема утверждает, что любая непротиворечивая формальная система, достаточно богатая, чтобы содержать теорию чисел, обязательно содержит неразрешимое предложение, т.е. утверждение, которое невозможно ни доказать, ни опровергнуть в ее рамках. Теперь общепризнано, что абсолютного доказательства в математике не существует. Относительно того, что такое доказательство, мнения расходятся. Однако большинство математиков склонно полагать, что проблемы оснований математики являются философскими. И действительно, ни одна теорема не изменилась вследствие вновь найденных логически строгих структур; это показывает, что в основе математики лежит не логика, а здравая интуиция.

Если математику, известную до 1600, можно охарактеризовать как элементарную, то по сравнению с тем, что было создано позднее, эта элементарная математика бесконечно мала. Расширились старые области и появились новые, как чистые, так и прикладные отрасли математических знаний. Выходят около 500 математических журналов. Огромное количество публикуемых результатов не позволяет даже специалисту ознакомиться со всем, что происходит в той области, в которой он работает, не говоря уже о том, что многие результаты доступны пониманию только специалиста узкого профиля. Ни один математик сегодня не может надеяться знать больше того, что происходит в очень маленьком уголке науки.

Список литературы

Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959

Юшкевич А.П. История математики в средние века. М., 1961

Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986

Клейн Ф. Лекции о развитии математики в XIX столетии. М., 1989