“Геометрия владеет двумя сокровищами: одно из них - это
теорема Пифагора, и другое – деление отрезка в среднем и
крайнем отношении…Первое можно сравнить с мерой
золота, второе больше напоминает драгоценный камень”
Иоганн Кеплер
(Н.Васютинский. Золотая пропорция.-М.:Молодая
гвардия,1990,с.8)
Теория архитектурных пропорций развивалась не только как профессионально-эстетическое отражение практики, но и как процесс адаптации к архитектурным задачам представлений о геометрии и законах пространства, полученных в других областях знания (физика, философия, биология, психология и т.д.). В рамках профессиональной практики, эмпирическое познание законов гармонии осуществлялось через диалектическое отражение единства и противоположности модульных и геометрических систем пропорций.
Ориентация на необходимость гармонизации формы всегда опиралась на объективность избирательного подхода человека при восприятии пространства (т.е. на предположение о существовании в природе и механизмах восприятия особенных отношений, соответствующих живой материи, а в отдельных древних гипотезах – и природе всего космоса). Это утверждало гармонию как законную норму, как порядок отношений в геометрии объекта искусственной природы, соответствующий законам естественной природы. С древности, мерой архитектурных объектов выступал человек. Позже, под давлением социальных требований унификации и стандартизации, антропометрические системы измерения сменились абстрактными численными и линейными мерами.
Эмпирический поход получил импульс в развитии в связи с бурным ростом капиталистической промышленности (резко возросшие объемы и скорость строительства, новые технологии). Но утвердить в социальной практике право человека на эстетику и гармонию, в противовес элементарной модульной системе (кубической решетке, основанной на механическом членении пространства на абстрактные доли - метры, сантиметры и миллиметры), ему не удалось.
К середине ХХ в. эмпирический подход, не смог отстоять свою состоятельность и исчерпал себя. К этому времени на базе традиционной геометрии были отработаны различные методы пропорционирования. Но в условиях массового индустриального строительства, осуществляемого анонимными заказчиками архитектуры, их применение было крайне ограничено. Одновременно, на уровне идей и концепций, были выработаны новые подходы к нормативному обоснованию объективности пространственной гармонии.
Серьезный шаг в этом направлении сделал Цейзинг (середина ХIХ века), установивший связи пропорций тела человека с отношениями “золотого сечения” (числами Фибоначчи) и возродившей антропоцентрическую идею в архитектурной метрологии (3). Спустя почти столетие, Ле Корбюзье реализовал идею Цейзинга в “Модулоре” - модульной системе для строительства, которая соответствовала статическим и динамическим пропорциям человека (7).
Расширился перечень прикладных математических средств архитектурной пропорции: векторный анализ в приложении к природным формам (20), модели геометрического кодирования зрительной информации, так называемые коды размерно-пространственных структур (19), применение систем уравнений (теорема Пифагора и отношения среднепропорционального), как механизма выделения приоритетных отношений и конструирования особых, архитектурных, модульно-геометрических (3,4,5,6) пространственных образований.
1.2 Зрительное восприятие и геометрия. Принцип соответствия пропорций архитектуры и человека, находит свое дальнейшее развитие на более тонком уровне отражения пространства человеком, в механизмах зрительного восприятия. Он связывается с законом Вебера-Фехнера (9,12): процесс отражения пространственной информации зрительной системой связан с логарифмическими механизмами восприятия, преобразования, коммуникации и представления ее в зрительной коре. Иначе, сетчатка логарифмирует изображенные на ней проекции объектов, превращая действительные пространственные величины в частоты колебаний нейронов. Степени возбуждения, или пространственные частоты, пройдя длинный путь, передают степень возбуждения в мозг, и возбужденная зрительная кора воспроизводит образ объекта восприятия, превращая степени, в обратном порядке, в действительные отношения. Это уже специфическая оптика, реализуемая на уровне прямых и обратных связей нервной деятельности и поддержанная электрическими и химическими процессами. Не удивительно, что с логарифмическими механизмами восприятия зрительной информации естественно связываются отношения “золотого сечения”, сочетающего в себе, как арифметическую, так и геометрическую прогрессии, и обладающего универсальными логарифмическими особенностями (9).
С позиций современного знания о зрительном восприятии, предположения древних ученых и философов (Пифагорейская школа, Эмпедокл, Евклид) о том, что глаза испускают особые лучи во внешнее пространство, благодаря чему человек видит (Л.В.Тарасов, А.Н.Тарасова, Беседы о преломлении света, - М.: Наука, 1982 г. с.123), сегодня представляются не такими уж и наивными. Они правильно отражают принцип зрения, с тем уточнением, что мозг действительно испускает “лучи”, но не во внешнее пространство, а на сетчатку, и производит локацию пространственной геометрии внешнего пространства, но представленной в проекциях на сетчатке оптической системой глазного яблока.
Во второй половине ХХ века появляются информационные подходы (приложение закона Клода Шеннона о количественной мере информации к исследованию архитектурных пропорций), согласующиеся с законом Вебера-Фехнера и обосновывающие логарифмические принципы отражения пространства (13), но уже с позиций теории информации. Современное естествознание так же подтверждает логарифмическую природу физических явлений (например, периодичность, длительность). В частности, согласно второму началу термодинамики (закону энтропии), естественная природа теряет упорядоченность по логарифмической зависимости (11,21,24), т.е. процесс распада вещества периодически связан с его количеством (массой) в логарифмической форме.
Заметное расширение естественнонаучного начала в познании архитектурных пропорций характеризует не только кризис эмпирического познания, но и стремление к большей объективации знания, выходящее за рамки исследований возможностей абстрактных геометрических конструкций и численных мер. Кризис эмпирической методологии пропорций поставил новые задачи, связанные с более глубокой интеграцией в сфере интересов теории архитектурных пропорций математических, философских и физических моделей пространства (19,20). В этом отношении, физико-математические теории ХХ века, а так же философские работы, связанные с рефлексией результатов современной физики, представляют особую сферу для исследования категории гармонии вообще, гармонии в архитектурной геометрии, в частности.
1.3. Физика и геометрия природы. Как показывает анализ, современная физика пока не имеет готовых идей о законах и геометрии пространства-времени, приложимых к архитектуре в части сопоставимости физической и архитектурной геометрий. Даже обнадеживающие в начале ХХ века разработки А. Эйнштейна, сначала, в специальной (СТО), а потом и в общей (ОТО) теориях относительности, не привели к ожидаемым результатам. Практически, для всех областей знаний (за пределами физики), пространство-время носит мифологическую форму отчужденного от реальности “сюрреалистического” бытия природы. Релятивизм, разрушивший классическую традицию, по существу так и не представил взамен более убедительной, доступной и априори очевидной для человека идеи геометрии пространства-времени.
В СТО четырехмерное пространство-время Минковского, подобно трехмерному пространству и времени классической физики, носит абсолютный характер. В известном смысле пространство Минковского является экстраполяцией абсолютного трехмерного пространства Исаака Ньютона на еще одно измерение (21). Пространство Минковского однородно и изотропно (но уже в четырех измерениях), т.е. аналогично пространству Ньютона: как в механике Ньютона, так и в СТО, пространство-время пассивно. Это тот же сосуд, внутри которого тела, поля и т.п., движутся, не оказывая обратного воздействия на пространство-время (21). А.Эйнштейн сам отказался от СТО, в которой новый принцип относительности еще следует материалистическим принципам классической механики Ньютона. Он следующим образом объяснял отказ от СТО: “Итак, прежний способ, заключающийся в определенном построении координат в пространственно-временном континууме, оказывается неприменимым; представляется, что не существует пути, который бы позволил приспособить к четырехмерному миру такие координатные системы, чтобы с помощью их можно было бы ожидать особенно простой формулировки законов природы. Поэтому не остается ничего другого, как признать все мыслимые координатные системы принципиально равноправными для описания природы” (21).
В ОТО Эйнштейн заложил основы геометризации уравнений материи. Дж. Уиллер так выразил идею Эйнштейна:“Я глубоко потрясен сознанием всего величия пророческой мечты Эйнштейна, владевшей им на протяжении последних 40 лет его жизни. Я спрашиваю себя, как воплощается сегодня надежда Эйнштейна понять материю как форму проявления пустого искривленного пространства-времени. Его давняя мечта, так и не осуществленная им на протяжении всей его жизни и к осуществлению которой не приблизились еще и сегодня, может быть выражена древним изречением “все есть ничто”. Сегодня эту мысль можно высказать в виде рабочей гипотезы: материя есть возбужденное состояние динамической геометрии” (16).