Weyl H. Symmetry–Princeton: Princeton Universal Press,1952
2.1.Методология естествознания. В качестве методологической основы анализа геометрических идей в современном естествознании (в плане их применения в теориях пропорций) могут быть принципы, на которые Э.Шмутцер (21) указывает как на основные, для создания физической теории: принцип простоты (максимально полное описание с помощью минимального числа законов); принцип ковариантности (независимость законов, наполненных физическим содержанием от субъекта и произвольно выбираемых параметров системы отсчета); геометрические основы (возможен переход к геометрии с кручениями); квантовый характер (выход за рамки классических представлений); правила перестановок и динамические законы; симметрия; причинность; принцип непрерывности познания (законы на более высоком уровне включают нижние, как частные случаи). Исследование геометрических моделей в физике с позиции соблюдения принципа симметрии, и его преемственности при переходе с одних уровней на другие, может быть принято для анализа проблем геометрии архитектурных пропорций.
2.2. Принцип непрерывности познания. Принцип непрерывности познания предполагает естественный переход от старой теорий к новой, корректный ввод новых представлений и процедур преобразований, связанных с математическим переоформлением прошлого знания. Анализируя проблемы геометрии релятивистской физики ХХ века и следуя принципу непрерывности в познании, мы должны: 1) вернуться к той исторической ситуации, когда была создана теория относительности; 2) к причинам отрицания СТО и разработки ОТО; 3) к тому фундаментальному открытию, которое привело к отрицанию абсолютной системы отсчета Ньютона - к открытию конечной величины скорости света.
2.3. Принцип симметрии. Принцип симметрии один из ведущих принципов познания. Он лежит в фундаменте диалектики. Законы единства и борьбы противоположностей по существу отражают основной закон симметрии связанный с различием и тождеством диалектических сторон явления, составляющих сущность его движения, развития.
Пьер Кюри рассматривал симметрию как результат диалектического взаимодействия объекта со средой. Он придавал симметрии огромную роль в исследовании физических явлений: “Думаю, что представляет интерес ввести в изучение физических явлений понятие о симметрии, столь привычной кристаллографам” (Пьер Кюри, 1894г. “О симметрии физических явлений; симметрии электрического и магнитного поля”). По Кюри, симметрия порождающей среды накладывается на симметрию тела, образующегося в этой среде. Получившаяся в результате форма тела сохраняет только те элементы собственной симметрии, которые совпадают с наложенными на него элементами среды, т.е. сохраняются только тождественные свойства (среда, тело–диалектические противоположности, порожденный объект - их единство).
Понятие симметрии, развиваемое Пьером Кюри, шире обыденного понимания симметрии как, например, зеркальное равновесие масс, и предполагает, прежде всего, симметрию как движение, как развитие, как отношение отрицания единичных свойств тела и среды и утверждения их общих свойств в форме особенного, порожденного ими нового тела (2,10,18). Другим примером динамической симметрии является процесс метаболизма, свойственный органическим формам, как единство синтеза и распада. При очевидном различии (жизнь и смерть), эти процессы находятся в отношении симметрии.
В научной методологии, смысл симметрии (отношений) так же предполагает, что фундаментальный закон должен быть инвариантным по отношению к действию некоторой операции симметрии (преобразования координат, функциональные преобразования и т.п.).
3. СИММЕТРИЯ В СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
3.1. Геометрия специальной теории относительности. Соответствует ли принципам симметрии модель пространства-времени, разработанная специальной теорией относительности с целью органичного включения открытой физической постоянной – скорости света в физическую теорию, взамен представлениям Ньютона, об отсутствии ограничений на скорость?
Геометрическим способом введения в физику световой константы и светоподобного интервала является псевдоевклидова геометрия (теорема Пифагора, связывающая в псевдоевклидовой метрике абсолютный и относительные интервалы пространства и времени). Пространство-время представлено ортогональными координатами и разделено образующими, для которых x = t (это взаимно-перпендикулярные, развернутые вокруг центра системы отсчета (x,t) под углом
образующие (ct,-ct). Они разделяют ИСО на две области: область до световых скоростей и область сверхсветовых скоростей. Область до световых скоростей, в свою очередь, состоит из области прошлого и области будущего (Рис.1). Квадрат абсолютного интервала равен разности квадратов относительных интервалов пространства и времени: , .3.2. Нарушение принципа симметрии специальной теорией относительности. Отметим следующие нарушения принципа симметрии в модели ИСО СТО:
1. Кроме скорости v (абсолютной скорости пробной частицы), и скорости с (абсолютной скорости света), в уравнениях присутствует скорость
, физический смысл которой не ясен, кроме того, что она входит в выражение коэффициента Лоренцева сокращения (расширения) . Как производная абсолютных скоростей v и c, она должна иметь аналогичный смысл и указывает на существование некоторого реального физического объекта, с движением которого она связана.2. При
равноправной v и c, отношения c/c = 1/1 = 1 и c/v = 1/ так же должны иметь смысл адекватный смыслу . Иначе, предположительно, в световой модели Вселенной должны существовать три типа равноправных ИСО, со своими коэффициентами сокращения (расширения).3. Введение понятия светоподобного интервала, в связи с открытием в природе предельной скорости света (граничные параметры скоростей v=0, v=c), предполагает два типа равноправных ИСО, для которых состояние покоя формулируется относительно граничных параметров скорости света:
, состояние покоя которой соответствует скорости v=0 (система отсчета Лоренца-Минковского в СТО) и , состояние покоя которой соответствует скорости света (фотон, как покоящаяся система). СТО не рассматривает такую равноправную . При заданном условии покоя v=c), покоится на образующих светоподобного конуса (сt ,-ct) на таких же законных основанияхкак покоится при v=0. зеркальна . Если расширяется, то – сокращается. Скорость частицы в - , = c/v= . Так как - v в и в связаны скоростью света (или светоподобным интервалом), и являются относительными, связанными между собой светоподобным интервалом, подсистемами одной и той же системы отсчета. Иначе, светоподобный интервал это не только предельная величина скорости, что утверждает СТО, но, прежде всего, скорость, связывающая две равноправные, но качественно различные ИСО покоя в движении одной и той же “пробной массы”, т.е. системы отсчета присущих ей различных форм движения, например, как частицы - v и как излучения - . Эти скорости могут быть связаны с различной плотностью массы пробной частицы (например, v – скорость положительной плотности +p и - скорость отрицательной плотности -p).4. В связи с тем, что в ИСО Минковского часть пространства-времени связана с досветовыми скоростями (конуса будущего и прошлого), а часть - со сверхсветовыми скоростями, она не только полностью не определена, но допускает нарушение исходного принципа своей конструкции – движение со сверхсветовой скоростью. Если допустить существование сверхсветовых скоростей, мы, при конструировании ИСО, должны отказаться от скорости света, связанного с ней
и определяться в новом геометрическом принципе ИСО. Но это уже будет совершенно другая система отсчета.