Содержание
Введение
I. Постановка основной задачи теории аппроксимации
1.1. Основная теорема аппроксимации влинейном нормированном пространстве
1.2. Теорема аппроксимации в пространстве Гильберта
1.3. Первая теорема Вейерштрасса
1.4. Вторая теорема Вейерштрасса
II. Круг идей П.Л. Чебышева
2.1. Теорема Валле-Пуссена и теорема существования
2.2. Теорема Чебышева
2.3. Переход к периодическим функциям
2.4. Обобщение теоремы Чебышева
III. Методы аппроксимации
3.1. Приближение функции многочленами
3.2. Формула Тейлора
3.3. Ряды Фурье
Заключение
Литература
Введение
Элементы важной и интересной области математики- теория приближения функций. Под приближением функции понимают замену по определенному правилу одной функции другой, близкой к исходной в том или ином смысле. Практическая необходимость в такой замене возникает в самых различных ситуациях, когда данную функцию необходимо заменить более простой и удобной для вычислений, восстановить функциональную зависимость по экспериментальным данным, и т.п.
Основоположником теории аппроксимации функций является великий русский математик Пафнутий Львович Чебышев (1821-1894).
В качестве приближающих функций выбирают чаще всего алгебраические и тригонометрические многочлены. Так же важное значение имеет метод наилучшего приближения, предложенный Чебышевым. Он возник из решения практических задач, связанных с конструированием прямолинейно направляющих шарнирных механизмов. Такие механизмы в XIX веке использовались в паровых машинах- основных универсальных двигателях того времени- для поддержания прямолинейного движения поршневого штока. К ним относятся параллелограмм Уатта и некоторые его разновидности.
На дальнейшее развитие этой теории оказало влияние открытие, сделанное в конце XIX века немецким математиком Карлом Вейерштрассом. Им была доказана принципиальная возможность приближения произвольной непрерывной функции с любой заданной степенью точности алгебраическим многочленом, что явилось второй причиной применения этих многочленов как универсального средства приближения функций, с заданной сколь угодно малой ошибкой.
Кроме алгебраических многочленов, другим средством приближения функций являются тригонометрические многочлены, значение которых в современной математике, конечно, не исчерпывается указанной ролью.
I. Постановка основной задачи аппроксимации
Основную задачу теории аппроксимации можно сформулировать следующим образом: на некотором точечном множестве
в пространстве произвольного числа измерений заданы 2 функции f(P) и F(P,A1,A2...An) от точки P , из которых вторая зависит ещё от некоторого числа параметров А1,А2...Аn; эти параметры требуется определить так, чтобы уклонение в функции F(P,A1,A2...An) от функции f(P) было наименьшим. При этом, конечно, должно быть указано, что понимают под уклонением F от f или, как ещё принято говорить, под расстоянием между F и f.Если, например, рассматриваются ограниченные функции, то в качестве расстояния между двумя функциями можно взять верхнюю грань в
модуля их разности. При таком определении расстояния для совокупности всех ограниченных в функций оказываются справедливыми многие соотношения, которые мы имеем для точек обычного 3х-мерного пространства.Последнее обстоятельство, с которым постоянно приходится сталкиваться в математике при рассмотрении других классов функций и многих иных совокупностей (множеств), привело к созданию весьма важного понятия метрического пространства, так что при дальнейшем изложении совокупность
- это метрическое, либо Гильбертово пространство.1.1. Основная теорема аппроксимации линейном нормированном пространстве
Пусть Е- произвольное нормированное пространство, пусть g1,g2...gn- n линейно- независимых элементов из Е. Основную задачу аппроксимации применительно к рассматриваемому нами “линейному случаю” можно сформулировать следующим образом: дан элемент х
Е, требуется определить числа , ... так, чтобы величина получила наименьшее значение.Докажем, что требуемые значения чисел
существуют.Предварительно заметим, что
- есть непрерывная функция своих аргументов. Действительно, в силу неравенства треугольника :Введём теперь вторую непрерывную функцию:
На “сфере”
, которая является ограниченным замкнутым множеством точек в n-мерном конечном Евклидовом пространстве, функция по известной теореме Вейерштрасса имеет некоторый минимум .Неотрицательное число
не может равняться 0, так как векторы g1,g2...gnлинейно независимы. Так же . Обозначим ( )- нижняя грань значения функций . Если , тоЖелая найти минимум функции
, мы можем ограничиться рассмотрением только значений , для которых , т.е. рассмотрением функции в ограниченной замкнутой области, а в такой области непрерывная функция имеет минимум.Итак, существование линейной комбинации
, дающей наилучшую аппроксимацию элемента х, доказано.Строго нормированное пространство.
Возникает вопрос, когда выражение
, дающее наилучшую аппроксимацию элемента х, будет единственным для ?Указанная единственность во всяком случае имеет место тогда, когда пространство Е строго нормировано, т.е. когда в неравенстве
, знак “=” достигается только при , .В самом деле, допуская, что пространство Е строго нормировано, предположим, что элемент х имеет два выражения:
и наилучшего приближения, причём g1,g2...gnлинейно независимы. где, как легко видеть, можно принять, что и, поскольку , то , и, значит,