Смекни!
smekni.com

Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора (стр. 1 из 8)

Выпускная квалификационная работа

Выполнила студентка V курса математического факультета Овчинникова Елена Александровна

Вятский государственный гуманитарный университет

Киров 2005

Введение

Раздел математической логики – теория нестандартных моделей математического анализа относительно молод и недостаточно освещён в математической литературе. Поэтому мне интересно было осветить его элементы в своей квалификационной работе.

Целью работы является освещение теории стандартных операторов, исследование резольвенты и спектра оператора с помощью стандартных методов математического анализа, а затем, после введения основных понятий и предложений нестандартного анализа, с помощью нестандартных методов.

В ходе работы были описаны резольвентное и спектральное множества операторов, а так же приведены их примеры на стандартных и нестандартных операторах.

История нестандартного анализа

Возраст нестандартного анализа колеблется от четырёх десятков до трех сотен лет. Четыре десятка получается, если считать, что нестандартный анализ зародился осенью 1960 года, когда его основатель, Абрахам Робинсон, сделал на одном из семинаров Принстонского университета доклад о возможности применения методов математической логики к обоснованию математического анализа. Триста лет получается, если считать началом нестандартного анализа появление символов бесконечно малых dx и dy в трактате Лейбница.

Как и всякое другое научное направление, нестандартный анализ возник не на пустом месте. Основные его источники: во-первых, это идущая от классиков математического анализа традиция употребления бесконечно больших и бесконечно малых – традиция, сохранившаяся до нашего времени. Второй, менее очевидный источник – нестандартные модели аксиоматических систем, появившиеся в математической логике.

К 1960 году методы построения нестандартных моделей были давно разработаны и хорошо известны специалистам по теории моделей, одним из основателей которой был А. Робинсон. Оставалось лишь соединить их с идеями о применении бесконечно малых величин в анализе, чтобы положить начало развитию нестандартного анализа. В 1961 г. появилась статья А. Робинсона “Нестандартный анализ” в Трудах Нидерландской академии наук. В статье были намечены как основные положения нестандартного анализа, так и некоторые его приложения. В течение последующих восьми лет вышли в свет три монографии, излагающие нестандартную теорию: в 1962 г. - книга В.А. Дж. Люксембурга “Нестандартный анализ. Лекции о робинсоновой теории бесконечно малых и бесконечно больших чисел”, в 1966 г. - книга самого А. Робинсона “Нестандартный анализ” и в 1969 г. - книга М. Маховера и Дж. Хиршфелда “Лекции о нестандартном анализе”.

Наибольший резонанс вызвала книга Робинсона. В девяти первых главах этой монографии содержалось как построение необходимого логико-математического аппарата, так и многочисленные приложения – к дифференциальному и интегральному исчислению, к общей топологии, к теории функций комплексного переменного, к теории групп Ли, к гидродинамике и теории упругости.

В 1966 г. появилась статья А.Р. Бернстейна и А. Робинсона, в которой впервые методами нестандартного анализа было получено решение проблемы инвариантных пространств для полиномиально компактных операторов. В очерке П.Р. Халмоша “взгляд в гильбертово пространство” в качестве проблемы фигурирует поставленная К.Т. Смитом задача о существовании инвариантного подпространства для таких операторов Т в гильбертовом пространстве

, для которых оператор
компактен. А.Р. Бернстейном и А. Робинсоном методами нестандартного анализа было доказано, что любой полиномиально-компактный оператор в гильбертовом пространстве имеет нетривиальное инвариантное замкнутое подпространство.

Приложения нестандартного анализа внутри математики охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур.

В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга.

Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений.

В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течение последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США.

Линейные операторы

Определение и примеры линейных операторов

Пусть Е и Е1 – два линейных топологических пространства. Линейным оператором, действующим из Е в Е1, называется отображение

y=Ax (x

E, y
E1),

удовлетворяющее условию

А(

)=
.

Совокупность DA всех тех х

Е, для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E, однако мы всегда будем считать, что DA есть линейное многообразие, т.е. если x,y
DА, то и
DA при всех
и
.

Оператор называется непрерывным, если он любую сходящуюся последовательность переводит в сходящуюся последовательность.

Пример 1: Пусть Е – линейное топологическое пространство. Положим

Iх=х для всех х

Е

Такой оператор I, переводящий каждый элемент пространства в себя, называется единичным оператором.

Пример 2: Если Е и Е1 – произвольные линейные топологические пространства и

0х=0 для всех х

Е

(здесь 0 – нулевой элемент пространства Е1), то 0 называется нулевым оператором.

Непрерывность оператора в первых двух примерах очевидна.

Пример 3: Общий вид линейного оператора, переводящего конечномерное пространство в конечномерное:

Пусть А – линейный оператор, отображающий n-мерное пространство Rn с базисом е1,е2,…,еn в m-мерное пространство Rm c базисом f1,f2,…,fm. Если х – произвольный вектор на Rn, то

х=

и, в силу линейности оператора А,

Ах=

Таким образом, оператор А задан, если известно, во что он переводит базисные векторы е1,е2,…,еn. Рассмотрим разложение векторов Аеi по базису f1,f2,…,fm. Имеем

Аеi=

Отсюда ясно, что оператор А определяется матрицей коэффициентов аi j. Образ пространства Rn в Rm представляет собой линейное подпространство, размерность которого равна, очевидно, рангу матрицы

, т. е. во всяком случае, не превосходит n. Мы получили, что оператор в конечномерном пространстве задаётся матрицей коэффициентов разложения векторов Аеi по векторам базиса fi. Образ вектора х вычисляется, как произведение столбца координат этого вектора на матрицу коэффициентов. Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.

Пример 4: Пусть А – линейный оператор, отображающий пространство квадратных матриц размерности m на себя. Пространство квадратных матриц размерности m – конечномерное, следовательно, линейный оператор задаётся матрицей размерности m. Таким образом, получается пример, похожий на пример 3, только в роли конечномерного пространства векторов здесь выступает конечномерное пространство квадратных матриц.

Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определён на всём Е и каждое ограниченное множество переводит снова в ограниченное множество. Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно, справедливы следующие утверждения.