Будем говорить, что последовательности
эквивалентны, если равенство “выполнено почти при всех i“, т.е. Если множество тех i, при которых , большое. Согласно свойству 5 любые последовательности, отличающиеся в конечном числе членов, эквивалентны. С каждой последовательностью сопоставим ее класс эквивалентности – класс всех эквивалентных ей последовательностей. Получающиеся классы эквивалентности будут называться гипердействительными числами. Обыкновенные действительные числа вкладываются в множество гипердействительных чисел. Таким образом, *R оказывается, как мы того и хотели, расширением множества R.Определим сложение и умножение на гипердействительных числах. Пусть класс
содержит последовательность , класс – последовательность . Назовем суммой классов и класс, содержащий последовательность ,а произведением последовательность . Корректность этих определений обеспечивается свойством 4 из определения ультрафильтра.Итак, мы ввели на множестве гипердействительных чисел сложение, умножение и порядок. Нетрудно проверить, что мы получили упорядоченное поле, т.е. что во множестве гипердействительных чисел выполняются все обычные свойства сложения, умножения и порядка. Аксиома Архимеда, однако, в этом поле не выполняется.
А теперь посмотрим, как ведут себя расширения операторов.
Теорема 1:
Доказательство:
Пусть . Это внутреннее множество. Внутренне числовое множество имеет супремум. Пусть . Если М – конечен, то А – ограничен. Если М – бесконечен, то такой, что , но , то есть – бесконечна. Рассмотрим , но, с другой стороны, . Получили противоречие, если предположить, что норма бесконечна. Значит оператор А ограничен.Доказано.
Теорема 2:
Доказательство:
Пусть есть операторы А и А1 такие, что
.Воспользуемся теоремой:
Если оператор
и обратим, а так же есть оператор В такой, что , то А1 – обратим, причём .Поскольку данные операторы бесконечно близки, то норма их разности есть число бесконечно малое. А норма оператора А – конечна, а бесконечно малое число, естественно, меньше числа, обратного конечному, что гарантирует выполнение неравенства
. Поэтому оператор В тоже обратим. Оценим норму , воспользуемся вторым неравенством: – конечна, , от сюда , то . Так как мы поняли, что оператор А1 обратим, то это неравенство можно записать по-другому: , от куда получим . Имеем одновременное выполнение двух неравенств: и , то есть , откуда . Что и требовалось доказать.Доказано.
Определение резольвенты в этом поле такое же, как и в стандартном. Но есть некоторое расхождение в определении спектра и собственного вектора.
Спектром линейного оператора в
называется множество: .Здесь пользуются определением не собственного вектора, а почти собственного вектора:
Когда оператор
существует, но этот оператор не ограничен, и уравнение имеет ненулевое решение, тогда вектор х мы будем называть почти собственным вектором. А число является элементом непрерывного спектра. Выше мы рассматривали пример линейного оператора, отображающий пространство непрерывных функций на отрезке [a,b] на себя: оператор умножения на функцию g(x). Возьмём в качестве функции , тогда резолвента этого оператора запишется в следующем виде , тогда непрерывным спектром будет являться сам отрезок . Рассмотрим функции вида (Рис. 1):