Смекни!
smekni.com

Физические основы теории нетеплового действия электродинамических полей в матери-альных средах (стр. 1 из 5)

Физические основы теории нетеплового действия электродинамических полей в материальных средах

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

Введение.

Приоритет прямого доказательства нетеплового действия электромагнитных (ЭМ) полей на физико-механические свойства материалов принадлежит Вертгейму [1], где по удлинению проволочных образцов различных металлов при постоянной внешней механической нагрузке в условиях пропускания электрического тока либо только при термическом воздействии для одной и той же температуры образца определялись соответственно модули упругости G1 и G2 исследуемого материала. Наличие разности ΔG = |G1 – G2| служило доказательством дополнительного нетеплового действия электрического тока на величину модуля упругости металла. Однако в то время этот эффект не был актуален, а потому не востребован, и лишь спустя 125 лет указанное явление было переоткрыто Троицким [2]. Теперь феномен нетеплового действия ЭМ полей на свойства материальных сред не только всесторонне изучается, но и нашел успешное применение в технологиях обработки металлов и других материалов [3, 4].

Тем не менее, надо признать, что при значительных успехах в приложениях научное развитие этого направления исследований всегда сдерживалось концептуально, поскольку строгой электродинамической теории, последовательно описывающей нетепловое действие ЭМ полей на материальные среды, попросту не существовало. Объективность такого заявления иллюстрирует, в частности, многолетняя дискуссия в научной печати о природе электропластического эффекта (ЭПЭ) в металлах (например, в [3, 4]). Парадокс в том, что одни аргументированно на основе анализа уравнений ЭМ поля показывают, что ЭПЭ электродинамически обусловлен проявлением квадратичных по току закона Джоуля-Ленца и пинч-эффекта, а другие достоверно в многочисленных экспериментах убеждаются в нетепловой (линейной по току) природе ЭПЭ.

Основы электродинамики нетепловых процессов в материальных средах.

Попытаемся разобраться в этой далеко непростой ситуации, для чего рассмотрим систему электродинамических уравнений Максвелла - уравнения ЭМ поля:

(a)

, (b)
, (c)
, (d)
. (1) Здесь компоненты ЭМ поля векторы электрической
и магнитной
напряженности связаны с соответствующими векторами индукции
и
и плотности электрического тока
посредством материальных соотношений:

,
,
,

описывающих отклик среды на воздействие ЭМ поля;

- объемная плотность стороннего электрического заряда,
и
- электрическая и магнитная постоянные,
,
и
- удельная электрическая проводимость, относительные диэлектрическая и магнитная проницаемость среды, соответственно.

Фундаментальным следствием данных уравнений является тот факт, что описываемое ими поле распространяется в пространстве в виде ЭМ волн, переносящих поток ЭМ энергии

, аналитическая формулировка закона сохранения которой также следует из этих уравнений:

. (2)

Видно, что в данной точке среды диссипативные процессы электропроводности и изменения электрической и магнитной энергий порождаются потоком извне вектора Пойнтинга ЭМ энергии

, и наоборот.

Однако, согласно уравнениям системы (1), в принципе невозможны электродинамические потоки, переносящие только электрическую либо магнитную энергии, хотя процессы соответствующей поляризации сред существуют раздельно и энергетически независимы. Поэтому продолжим обсуждение уравнений (1) с целью их модификации для поля ЭМ векторного потенциала, поскольку новые уравнения позволят последовательно описать процессы нетеплового действия электродинамических полей в материальных средах: электрическую и магнитную поляризацию среды, передачу ей момента ЭМ импульса.

Сами исходные соотношения первичной взаимосвязи компонент ЭМ поля и поля ЭМ векторного потенциала с электрической

и магнитной
компонентами получим непосредственно из уравнений (1):

(a)

, (b)
, (c)
, (d)
. (3)

Здесь соотношение (3a) вводится с помощью уравнения (1d), так как дивергенция ротора произвольного векторного поля тождественно равна нулю. Аналогично (3b) следует из уравнения (1b) при

= 0, справедливого для сред с локальной электронейтральностью. Далее подстановка (3a) в (1а) дает (3c), а подстановка (3b) в (1c) с учетом закона Ома электропроводности приводит к (3d), где
- постоянная времени релаксации электрического заряда в среде за счет ее электропроводности. Как представляется в [5, 6], исходные соотношения (3) фундаментальны и перспективны с точки зрения физической интерпретации поля ЭМ векторного потенциала, выяснения его роли и места в явлениях электромагнетизма. Покажем это.

Главное фундаментальное следствие соотношений (3) состоит в том, что подстановки (3c) в (3b) и (3d) в (3a) приводят к системе электродинамических уравнений поля ЭМ векторного потенциала с электрической

и магнитной
компонентами, структурно полностью аналогичной системе уравнений (1):

(a) rot

, (b) div
, (4)

(c) rot

, (d) div
.

Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием калибровки посредством дивергентных уравнений (4b) и (4d), которые также представляют собой для уравнений (4a) и (4c) начальные условия в математической задаче Коши, что делает систему (4) замкнутой.

Подстановки соотношения (3с) в продифференцированное по времени (

) соотношение (3a) и аналогично (3d) в (3b) дают систему электродинамических уравнений ЭМ поля (1) при
= 0, где уравнения (1d) и (1b) получаются взятием дивергенции от (3a) и (3b). Уравнения (1а) и (1с) можно также получить, если взять ротор от (3с) и (3d) при подстановке в них (3а) и (3b).

Применение операции ротора к (3c) и подстановка в него (3a) с учетом (3d) преобразует систему (3) в другую систему теперь уже уравнений электрического поля с компонентами напряженности

и вектор-потенциала
:

(a) rot

, (b) div
, (5)

(c) rot

, (d) div
.

Соответственно взятие ротора от соотношения (3d) и подстановка в него (3b) с учетом (3c) снова преобразует систему соотношений (3) в еще одну систему уравнений классической электродинамики систему уравнений магнитного поля с компонентами напряженности

и векторного потенциала
:

(a) rot

, (b) div
, (6)